@article{AIHPB_2002__38_6_1039_0, author = {Pollard, David}, title = {Maximal inequalities via bracketing with adaptive truncation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1039--1052}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955351}, zbl = {1019.60015}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_1039_0/} }
TY - JOUR AU - Pollard, David TI - Maximal inequalities via bracketing with adaptive truncation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 1039 EP - 1052 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_6_1039_0/ LA - en ID - AIHPB_2002__38_6_1039_0 ER -
Pollard, David. Maximal inequalities via bracketing with adaptive truncation. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 1039-1052. http://archive.numdam.org/item/AIHPB_2002__38_6_1039_0/
[1] A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597. | MR | Zbl
, ,[2] The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 77 (1988) 271-306. | MR | Zbl
, , , ,[3] Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb. 70 (1985) 591-608. | MR | Zbl
,[4] Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab. 12 (1984) 13-34. | MR | Zbl
, ,[5] Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields 97 (1993) 113-150. | MR | Zbl
, ,[6] Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952) 277-281. | Zbl
,[7] Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré 31 (1995) 393-427. | Numdam | MR | Zbl
, , ,[8] Central limit theorems for empirical measures, Ann. Probab. 6 (1978) 899-929. | MR | Zbl
,[9] Donsker classes of functions, in: , , , (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352. | MR | Zbl
,[10] Probability in Banach Spaces: Isoperimetry and Processes, Springer, New York, 1991. | MR | Zbl
, ,[11] Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré 22 (1986) 381-423. | Numdam | MR | Zbl
,[12] A central limit theorem under metric entropy with L2 bracketing, Ann. Probab. 15 (1987) 897-919. | MR | Zbl
,[13] Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, 995, Springer, New York, 1983, pp. 123-154. | MR | Zbl
,[14] A User's Guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2001. | Zbl
,[15] A uniform central limit theorem for partial-sum processes indexed by sets, in: , (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240. | MR | Zbl
,[16] Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré 29 (1993) 587-597. | Numdam | MR | Zbl
,