@article{AIHPB_2002__38_6_923_0, author = {Grama, Ion and Nussbaum, Michael}, title = {A functional hungarian construction for sums of independent random variables}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {923--957}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955345}, zbl = {1021.60027}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_923_0/} }
TY - JOUR AU - Grama, Ion AU - Nussbaum, Michael TI - A functional hungarian construction for sums of independent random variables JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 923 EP - 957 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_6_923_0/ LA - en ID - AIHPB_2002__38_6_923_0 ER -
%0 Journal Article %A Grama, Ion %A Nussbaum, Michael %T A functional hungarian construction for sums of independent random variables %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 923-957 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2002__38_6_923_0/ %G en %F AIHPB_2002__38_6_923_0
Grama, Ion; Nussbaum, Michael. A functional hungarian construction for sums of independent random variables. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 923-957. http://archive.numdam.org/item/AIHPB_2002__38_6_923_0/
[1] Hungarian constructions from the nonasymptotic viewpoint, Ann. Probab. 17 (1989) 239-256. | MR | Zbl
, ,[2] Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR | Zbl
, ,[3] Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. | MR | Zbl
,[4] Extensions on results of Komlós, Major and Tusnády to the multivariate case, J. Multivariate Anal. 28 (1989) 20-68. | MR | Zbl
,[5] Gaussian approximation of local empirical processes indexed by functions, Probab. Theory Related Fields 107 (1997) 283-311. | MR | Zbl
, ,[6] Asymptotic equivalence for nonparametric generalized linear models, Probab. Theory Related Fields 111 (1998) 167-214. | MR | Zbl
, ,[7] Orthogonal Series, American Mathematical Society, Providence, RI, 1989. | MR | Zbl
, ,[8] Komlós-Major-Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab. 7 (1994) 73-118. | Zbl
,[9] An approximation of partial sums of independent rv's and the sample df. I, Z. Wahrsch. verw. Gebiete 32 (1975) 111-131. | MR | Zbl
, , ,[10] An approximation of partial sums of independent rv's and the sample df. II, Z. Wahrsch. verw. Gebiete 34 (1976) 33-58. | MR | Zbl
, , ,[11] Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986. | MR | Zbl
,[12] Asymptotics in Statistics: Some Basic Concepts, Springer-Verlag, New York, 2000. | MR | Zbl
, ,[13] Strong approximation for multivariate empirical and related processes, via KMT constructions, Ann. Probab. 17 (1989) 266-291. | MR | Zbl
,[14] M. Nussbaum, Asymptotic equivalence of density estimation and white noise, Preprint No. 35, Institute of Applied Analysis and Stochastics, Berlin, 1993. | MR
[15] Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist. 24 (1996) 2399-2430. | MR | Zbl
,[16] Strong approximation for set-indexed partial sum processes, via K.M.T. constructions I, Ann. Probab. 21 (1993) 759-790. | MR | Zbl
,[17] Strong approximation for set-indexed partial sum processes, via K.M.T. constructions II, Ann. Probab. 21 (1993) 1706-1727. | MR | Zbl
,[18] Local invariance principles and their applications to density estimation, Probab. Theory Related Fields 98 (1994) 21-45. | MR | Zbl
,[19] The rate of convergence in the invariance principle for non-identically distributed variables with exponential moments, Limit theorems for sums of random variables. Trudy Inst. Matem., Sibirsk. Otdel. AN SSSR. 3 (1984) 3-49, (in Russian). | MR | Zbl
,[20] Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996. | MR | Zbl
, ,[21] On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions, Probab. Theory Related Fields 74 (1987) 534-566. | MR | Zbl
,[22] Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 (1996) 807-831. | MR | Zbl
,[23] Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: P & S 2 (1998) 41-108. | Numdam | MR | Zbl
,[24] Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I, Theory Probab. Appl. 45 (2001) 624-641. | MR | Zbl
,