On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 1-13.
@article{AIHPB_2007__43_1_1_0,
     author = {Pratelli, Aldo},
     title = {On the equality between {Monge's} infimum and {Kantorovich's} minimum in optimal mass transportation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1--13},
     publisher = {Elsevier},
     volume = {43},
     number = {1},
     year = {2007},
     doi = {10.1016/j.anihpb.2005.12.001},
     mrnumber = {2288266},
     zbl = {1121.49036},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2005.12.001/}
}
TY  - JOUR
AU  - Pratelli, Aldo
TI  - On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2007
SP  - 1
EP  - 13
VL  - 43
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2005.12.001/
DO  - 10.1016/j.anihpb.2005.12.001
LA  - en
ID  - AIHPB_2007__43_1_1_0
ER  - 
%0 Journal Article
%A Pratelli, Aldo
%T On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2007
%P 1-13
%V 43
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2005.12.001/
%R 10.1016/j.anihpb.2005.12.001
%G en
%F AIHPB_2007__43_1_1_0
Pratelli, Aldo. On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 1-13. doi : 10.1016/j.anihpb.2005.12.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2005.12.001/

[1] L. Ambrosio, Lecture notes on optimal transport problems, in: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., vol. 1812, Springer, 2003, pp. 1-52. | MR | Zbl

[2] L. Ambrosio, A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, in: Optimal Transportation and Applications, Lecture Notes in Math., vol. 1813, Springer, 2003, pp. 123-160. | MR | Zbl

[3] L. Caffarelli, M. Feldman, R.J. Mccann, Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002) 1-26. | MR | Zbl

[4] L.C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (653) (1999). | Zbl

[5] W. Gangbo, The Monge mass transfer problem and its applications, Contemp. Math. 226 (1999) 79-104. | MR | Zbl

[6] L.V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk SSSR 37 (1942) 227-229.

[7] L.V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948) 225-226.

[8] G. Monge, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris, 1781.

[9] J.C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970) 419-423. | MR | Zbl

[10] A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on, http://cvgmt.sns.it/.

[11] S.T. Rachev, L. Rüschendorf, Mass Transportation Problems, Springer-Verlag, 1998.

[12] H.L. Royden, Real Analysis, second ed., Macmillan, 1968. | Zbl

[13] N.S. Trudinger, X.J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations 13 (2001) 19-31. | MR | Zbl

Cité par Sources :