Kyprianou, A. E.; Loeffen, R. L.
Refracted Lévy processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 1 , p. 24-44
Zbl 1201.60042 | MR 2641768
doi : 10.1214/08-AIHP307
URL stable :

Classification:  60J99,  60G40,  91B70
Motivé par des considérations classiques de la théorie du risque, nous étudions des problèmes de croisement de frontière par des processus de Lévy réfractés. Un processus de Lévy réfracté est un processus de Lévy dont la dynamique possède une dérive linéaire fixe. Plus formellement, un processus de Lévy réfracté est décrit par l'unique solution forte, si elle existe, de l'équation différentielle stochastique d U t = - δ 1 { U t > b } d t + d X t , où X est un processus de Lévy et b , δ , de telle manière que le processus U peut visiter l'intervalle ( b , ) avec probabilité positive. En particulier, nous considérons le cas où le processus de Lévy n'a pas de saut positif et nous fournissons des calculs explicites pour le problème de sortie d'un intervalle. Toutes les identités peuvent être écrites en terme de la fonction d'échelle associée au processus de Lévy sous-jacent et sa version perturbée. Finalement, nous appliquons les identités obtenues aux processus de risque.
Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation d U t = - δ 1 { U t > b } d t + d X t , where X = { X t : t 0 } is a Lévy process with law and b , δ such that the resulting process U may visit the half line ( b , ) with positive probability. We consider in particular the case that X is spectrally negative and establish a suite of identities for the case of one and two sided exit problems. All identities can be written in terms of the q -scale function of the driving Lévy process and its perturbed version describing motion above the level b . We remark on a number of applications of the obtained identities to (controlled) insurance risk processes.


[1] S. Asmussen and M. Taksar. Controlled diffusion models for optimal dividend pay-out. Insurance Math. Econom. 20 (1997) 1-15. MR 1466852 | Zbl 1065.91529

[2] F. Avram, Z. Palmowski and M. R. Pistorius. On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17 (2007) 156-180. MR 2292583 | Zbl 1136.60032

[3] R. Bekker, O. J. Boxma and J. A. C. Resing. Lévy processes with adaptable exponent. Preprint, 2007. MR 2514950 | Zbl 1169.60022

[4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. MR 1406564 | Zbl 0938.60005

[5] T. Chan and A. E. Kyprianou. Smoothness of scale functions for spectrally negative Lévy processes. Preprint, 2008. Zbl pre05950545

[6] E. Eberlein and D. Madan. Short sale restrictions, rally fears and option markets. Preprint, 2008.

[7] H. Furrer. Risk processes perturbed by α-stable Lévy motion. Scand. Actuar. J. 1 (1998) 59-74. MR 1626676 | Zbl 1026.60516

[8] H. Gerber and E. Shiu. On optimal dividends: From reflection to refraction. J. Comput. Appl. Math. 186 (2006) 4-22. MR 2190037 | Zbl 1089.91023

[9] H. Gerber and E. Shiu. On optimal dividend strategies in the compound Poisson model. N. Am. Actuar. J. 10 (2006) 76-93. MR 2328638

[10] B. Hilberink and L. C. G. Rogers. Optimal capital structure and endogenous default. Finance Stoch. 6 (2002) 237-263. MR 1897961 | Zbl 1002.91019

[11] F. Hubalek and A. E. Kyprianou. Old and new examples of scale functions for spectrally negative Lévy processes, 2007. Available at arXiv:0801.0393v1.

[12] M. Huzak, M. Perman, H. Šikić and Z. Vondraček. Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab. 14 (2004) 1378-1397. MR 2071427 | Zbl 1061.60075

[13] M. Huzak, M. Perman, H. Šikić and Z. Vondraček. Ruin probabilities for competing claim processes. J. Appl. Probab. 41 (2004) 679-690. MR 2074816 | Zbl 1065.60100

[14] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 2003. MR 1943877 | Zbl 1018.60002

[15] M. Jeanblanc and A. N. Shiryaev. Optimization of the flow of dividends. Uspekhi Mat. Nauk 50 (1995) 25-46. MR 1339263 | Zbl 0878.90014

[16] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New York, 1991. MR 1121940 | Zbl 0734.60060

[17] C. Klüppelberg, A. E. Kyprianou and R. A. Maller. Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14 (2004) 1766-1801. MR 2099651 | Zbl 1066.60049

[18] C. Klüppelberg and A. E. Kyprianou. On extreme ruinous behaviour of Lévy insurance risk processes. J. Appl. Probab. 43 (2006) 594-598. MR 2248586 | Zbl 1118.60071

[19] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. MR 2250061 | Zbl 1104.60001

[20] A. E. Kyprianou and Z. Palmowski. Distributional study of de Finetti's dividend problem for a general Lévy insurance risk process. J. Appl. Probab. 44 (2007) 349-365. MR 2340209 | Zbl 1137.60047

[21] A. E. Kyprianou and V. Rivero. Special, conjugate and complete scale functions for spectrally negative Lévy processes. Electron. J. Probab. 13 (2008) 1672-1701. MR 2448127 | Zbl 1193.60064

[22] A. E. Kyprianou, V. Rivero and R. Song. Convexity and smoothness of scale functions and de Finetti's control problem, 2008. Available at arXiv:0801.1951v2. MR 2644875

[23] A. Lambert. Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 251-274. Numdam | MR 1751660 | Zbl 0970.60055

[24] X. S. Lin and K. P. Pavlova. The compound Poisson risk model with a threshold dividend strategy. Insurance Math. Econom. 38 (2006) 57-80. MR 2197303 | Zbl 1157.91383

[25] M. R. Pistorius. A potential theoretical review of some exit problems of spectrally negative Lévy processes. Séminaire de Probabilités 38 (2005) 30-41. MR 2126965 | Zbl 1065.60047

[26] J.-F. Renaud and X. Zhou. Distribution of the dividend payments in a general Lévy risk model. J. Appl. Probab. 44 (2007) 420-427. MR 2340208 | Zbl 1132.60041

[27] L. C. G. Rogers. Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Probab. 37 (2000) 1173-1180. MR 1808924 | Zbl 0981.60048

[28] R. Situ. Theory of Stochastic Differential Equations with Jumps and Applications. Springer, New York, 2005. MR 2160585 | Zbl 1070.60002

[29] D. W. Strook. A Concise Introduction to the Theory of Integration, 3rd edition. Birkhäuser, Boston, 1999. MR 1658777 | Zbl 0912.28001

[30] R. Song and Z. Vondraček. On suprema of Lévy processes and application in risk theory. Ann. lnst. H. Poincaré Probab. Statist. 44 (2008) 977-986. Numdam | MR 2453779 | Zbl 1178.60036

[31] B. A. Surya, Evaluating scale functions of spectrally negative Lévy processes. J. Appl. Probab. 45 (2008) 135-149. MR 2409316 | Zbl 1140.60027

[32] N. Wan. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion. Insurance Math. Econom. 40 (2007) 509-523. MR 2311547 | Zbl 1183.91077

[33] A. Yu. Veretennikov. On strong solutions of stochastic. It equations with jumps. Teor. Veroyatnost. i Primenen. 32 (1987) 159-163. (In Russian.) MR 890945 | Zbl 0623.60070

[34] W. Whitt. Stochastic-Process Limits. Springer, New York, 2002. MR 1876437 | Zbl 0993.60001

[35] H. Y. Zhang, M. Zhou and J. Y. Guo. The Gerber-Shiu discounted penalty function for classical risk model with a two-step premium rate. Statist. Probab. Lett. 76 (2006) 1211-1218. MR 2269347 | Zbl 1161.60334

[36] X. Zhou. When does surplus reach a certain level before ruin? Insurance Math. Econom. 35 (2004) 553-561. MR 2106135 | Zbl 1117.91387

[37] X. Zhou. Discussion on: On optimal dividend strategies in the compound Poisson model by H. Gerber and E. Shiu. N. Am. Actuar. J. 10 (2006) 79-84. MR 2328656