The Cauchy problem for a nonlinear Wheeler-DeWitt equation
Annales de l'I.H.P. Analyse non linéaire, Volume 10 (1993) no. 1, p. 99-107
@article{AIHPC_1993__10_1_99_0,
     author = {Dias, Jo\~ao-Paulo and Figueira, M\'ario},
     title = {The Cauchy problem for a nonlinear Wheeler-DeWitt equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {10},
     number = {1},
     year = {1993},
     pages = {99-107},
     zbl = {0790.35074},
     mrnumber = {1212630},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1993__10_1_99_0}
}
Dias, J.-P.; Figueira, M. The Cauchy problem for a nonlinear Wheeler-DeWitt equation. Annales de l'I.H.P. Analyse non linéaire, Volume 10 (1993) no. 1, pp. 99-107. http://www.numdam.org/item/AIHPC_1993__10_1_99_0/

[1] J.P. Dias and M. Figueira, The Simplified Wheeler-DeWitt Equation: the Cauchy Problem and Some Spectral Properties, Ann. Inst. H. Poincaré, Physique Théorique, Vol. 54, 1991, pp. 17-26. | Numdam | MR 1102969 | Zbl 0741.35034

[2] G.W. Gibbons and L.P. Grishchuk, What is a Typical Wave Function for the Universe?, Nucl. Phy. B, Vol. 313, 1989, pp. 736-748.

[3] J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D, Vol. 28, 1983, pp. 2960-2975. | MR 726732

[4] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. | MR 710486 | Zbl 0516.47023

[5] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness, Academic Press, 1975. | Zbl 0308.47002

[6] L. Susskind, Lectures at the Trieste School on String Theories and Quantum Gravity, April 1990.