@article{AIHPC_1993__10_6_605_0, author = {Long, Yiming}, title = {The minimal period problem of classical hamiltonian systems with even potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {605--626}, publisher = {Gauthier-Villars}, volume = {10}, number = {6}, year = {1993}, mrnumber = {1253604}, zbl = {0804.58018}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1993__10_6_605_0/} }
TY - JOUR AU - Long, Yiming TI - The minimal period problem of classical hamiltonian systems with even potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 1993 SP - 605 EP - 626 VL - 10 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1993__10_6_605_0/ LA - en ID - AIHPC_1993__10_6_605_0 ER -
%0 Journal Article %A Long, Yiming %T The minimal period problem of classical hamiltonian systems with even potentials %J Annales de l'I.H.P. Analyse non linéaire %D 1993 %P 605-626 %V 10 %N 6 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1993__10_6_605_0/ %G en %F AIHPC_1993__10_6_605_0
Long, Yiming. The minimal period problem of classical hamiltonian systems with even potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) no. 6, pp. 605-626. http://archive.numdam.org/item/AIHPC_1993__10_6_605_0/
[1] Nontrivial Solutions for a Class of Nonresonance Problems and Applications to Nonlinear Deferential Equations, Ann. Scuola Norm. Super. Pisa, Vol. 7, 1980, pp. 539-603. | Numdam | Zbl
and ,[2] Solutions with Minimal Period for Hamiltonian Systems in a Potential Well, Ann. Inst. Henri-Poincaré, Anal. non linéaire, Vol. 4, 1987, pp. 275-296. | Numdam | Zbl
and ,[3] Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. | Zbl
and ,[4] Dual Variational Methods in Critical Point Theory, J. Funct. Anal., Vol. 14, 1973, pp. 343-387. | Zbl
and ,[5] Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 103-116. | Zbl
and ,[6] Minimal Period Solutions of a Class of Hamiltonian Equation Systems, Acta Math. Sinica, Vol. 27, 1984, pp. 664-675. | Zbl
,[7] Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. Anal. non linéaire, Vol. 1, 1984, pp. 19-78. | Numdam | Zbl
,[8] An Index Theory for Periodic Solutions of Convex Hamiltonian Systems, Proc. Symp. in Pure Math., Vol. 45, 1986, pp. 395-423. | Zbl
,[9] Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990. | Zbl
,[10] Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inven. Math., Vol. 81, 1985, pp. 155-188. | EuDML | Zbl
and ,[11] Location, Multiplicity and Morse Indices of Min-Max Critical Points, Preprint. | Zbl
,[12] Some Results on Solutions of Minimal Period to Superquadratic Hamiltonian Equations, Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 475-482. | Zbl
and ,[13] Solutions of Minimal Period for a Class of Nonconvex Hamiltonian Systems and Applications to the Fixed Energy Problem, Nonlinear Anal. T.M.A., Vol. 10, 1986, pp. 371-382. | Zbl
and ,[14] Periodic Solutions of Convex Autonomous Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, Ann. Mat. pura ed appl., Vol. 147, 1987, pp. 21-72. | Zbl
and ,[15] Dual Morse Index Estimates for Periodic Solutions of Hamiltonian Systems in Some Nonconvex Superquadratic Case, Nonlinear Anal. T.M.A., Vol. 17, 1991, pp. 481-497. | Zbl
and ,[16] Essential Critical Points of Linking Type and Solutions of Minimal Period to Superquadratic Hamiltonian Systems, Preprint, 1991. | Zbl
and ,[17] A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain-Pass Theorem, J. London Math. Soc., Vol. 31, 1985, pp. 556-570. | Zbl
,[18] Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1963. | Zbl
,[19] Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Anal. T.M.A., Vol. 12, 1988, pp. 761-775. | Zbl
and ,[20] The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian System, Preprint of Nankai, Inst. Math. Nankai Univ., April 1991. Revised version, Preprint of F.I. Math. E.T.H.-Zürich, Nov. 1991, May 1992, J. Diff. Equa. (to appear).
,[21] Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. | Zbl
,[22] Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. | Zbl
,[23] Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. | Zbl
,[24] On the Existence of Periodic Solutions for a class of Symmetric Hamiltonian Systems, Nonlinear Anal. T.M.A., Vol. 11, 1987, pp. 599-611.
,[25] Morse Index Estimates in Min-Max Theorems, Manus. Math., Vol. 63, 1989, pp. 421-453. | Zbl
,[26] On the Mountain-Pass Lemma, Kexue Tongbao, Vol. 29, 1984, pp. 1151-1154. | Zbl
,[27] Doctoral Thesis, Nankai University, 1991.
,