Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 1, pp. 95-115.
@article{AIHPC_1996__13_1_95_0,
     author = {Alama, Stanley and Del Pino, Manuel},
     title = {Solutions of elliptic equations with indefinite nonlinearities via {Morse} theory and linking},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {95--115},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {1},
     year = {1996},
     mrnumber = {1373473},
     zbl = {0851.35037},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1996__13_1_95_0/}
}
TY  - JOUR
AU  - Alama, Stanley
AU  - Del Pino, Manuel
TI  - Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1996
SP  - 95
EP  - 115
VL  - 13
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1996__13_1_95_0/
LA  - en
ID  - AIHPC_1996__13_1_95_0
ER  - 
%0 Journal Article
%A Alama, Stanley
%A Del Pino, Manuel
%T Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
%J Annales de l'I.H.P. Analyse non linéaire
%D 1996
%P 95-115
%V 13
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1996__13_1_95_0/
%G en
%F AIHPC_1996__13_1_95_0
Alama, Stanley; Del Pino, Manuel. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 1, pp. 95-115. http://archive.numdam.org/item/AIHPC_1996__13_1_95_0/

[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. of Var. and P. D. E., Vol. 1, 1993, pp. 439-475. | MR | Zbl

[2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, to appear inMath. Z. | MR | Zbl

[3] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, preprint, 1994. | MR

[4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., Vol. 52, 1979, pp. 241-273. | MR | Zbl

[5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 945-950. | MR | Zbl

[6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, preprint, May 1994. | MR

[7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, preprint, 1994. | MR | Zbl

[8] H. Brezis and L. Nirenberg, "H1 versus C1 minimizers", C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 465-572. | MR | Zbl

[9] K.C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems", Birkhäuser: Boston, 1993. | MR | Zbl

[10] K.C. Chang, "H1 versus C1 isolated critical points", C. R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 441-446. | MR | Zbl

[11] M. Del Pino and P. Felmer, Multiple solutions for a semilinear elliptic equation, preprint, 1992. | MR

[12] J.F. Escobar and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. | MR | Zbl

[13] H. Hofer, A Note on the Topological Degree at a Critical Point of Mountainpass-type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. | MR | Zbl

[14] J. Kazdan and F. Warner, Scalar curvature and the conformal deformation of Riemannian structure, J. Diff. Geom., Vol. 10, 1975, pp. 113-134. | MR | Zbl

[15] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer: New York, 1989. | MR | Zbl

[16] T. Ouyang, On the positive solutions of semilinear elliptic equations Δu + λu + hup = 0 on compact manifolds, Part II, Indiana Univ. Math. J., Vol. 40, 1992, pp. 1083-1140. | MR | Zbl

[17] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS-NSF, Vol. 65, American Math. Soc.: Providence, 1986. | MR | Zbl

[18] M. Struwe, "Variational Methods", Springer-Verlag: Berlin, 1990. | MR | Zbl

[19] H. Tehrani, Ph.D. thesis, New York Univ., 1994.

[20] Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré- Analyse Non lin., Vol. 8, 1991, pp. 43-57. | Numdam | MR | Zbl