Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
Annales de l'I.H.P. Analyse non linéaire, Volume 13 (1996) no. 1, p. 95-115
@article{AIHPC_1996__13_1_95_0,
     author = {Alama, Stanley and Del Pino, Manuel},
     title = {Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {1},
     year = {1996},
     pages = {95-115},
     zbl = {0851.35037},
     mrnumber = {1373473},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1996__13_1_95_0}
}
Alama, Stanley; Del Pino, Manuel. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales de l'I.H.P. Analyse non linéaire, Volume 13 (1996) no. 1, pp. 95-115. http://www.numdam.org/item/AIHPC_1996__13_1_95_0/

[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. of Var. and P. D. E., Vol. 1, 1993, pp. 439-475. | MR 1383913 | Zbl 0809.35022

[2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, to appear inMath. Z. | MR 1381593 | Zbl 0853.35039

[3] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, preprint, 1994. | MR 1414377

[4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., Vol. 52, 1979, pp. 241-273. | MR 537061 | Zbl 0465.49006

[5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 945-950. | MR 1249366 | Zbl 0820.35056

[6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, preprint, May 1994. | MR 1356874

[7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, preprint, 1994. | MR 1321809 | Zbl 0816.35030

[8] H. Brezis and L. Nirenberg, "H1 versus C1 minimizers", C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 465-572. | MR 1239032 | Zbl 0803.35029

[9] K.C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems", Birkhäuser: Boston, 1993. | MR 1196690 | Zbl 0779.58005

[10] K.C. Chang, "H1 versus C1 isolated critical points", C. R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 441-446. | MR 1296769 | Zbl 0810.35025

[11] M. Del Pino and P. Felmer, Multiple solutions for a semilinear elliptic equation, preprint, 1992. | MR 1303117

[12] J.F. Escobar and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. | MR 856845 | Zbl 0628.53041

[13] H. Hofer, A Note on the Topological Degree at a Critical Point of Mountainpass-type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. | MR 727256 | Zbl 0545.58015

[14] J. Kazdan and F. Warner, Scalar curvature and the conformal deformation of Riemannian structure, J. Diff. Geom., Vol. 10, 1975, pp. 113-134. | MR 365409 | Zbl 0296.53037

[15] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer: New York, 1989. | MR 982267 | Zbl 0676.58017

[16] T. Ouyang, On the positive solutions of semilinear elliptic equations Δu + λu + hup = 0 on compact manifolds, Part II, Indiana Univ. Math. J., Vol. 40, 1992, pp. 1083-1140. | MR 1129343 | Zbl 0773.35020

[17] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS-NSF, Vol. 65, American Math. Soc.: Providence, 1986. | MR 845785 | Zbl 0609.58002

[18] M. Struwe, "Variational Methods", Springer-Verlag: Berlin, 1990. | MR 1078018 | Zbl 0746.49010

[19] H. Tehrani, Ph.D. thesis, New York Univ., 1994.

[20] Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré- Analyse Non lin., Vol. 8, 1991, pp. 43-57. | Numdam | MR 1094651 | Zbl 0733.35043