Ground states of semilinear elliptic equations : a geometric approach
Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 5, pp. 551-581.
@article{AIHPC_2000__17_5_551_0,
     author = {Bam\'on, Rodrigo and Flores, Isabel and del Pino, Manuel},
     title = {Ground states of semilinear elliptic equations : a geometric approach},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {551--581},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {5},
     year = {2000},
     mrnumber = {1791878},
     zbl = {0988.35054},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/}
}
TY  - JOUR
AU  - Bamón, Rodrigo
AU  - Flores, Isabel
AU  - del Pino, Manuel
TI  - Ground states of semilinear elliptic equations : a geometric approach
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2000
SP  - 551
EP  - 581
VL  - 17
IS  - 5
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/
LA  - en
ID  - AIHPC_2000__17_5_551_0
ER  - 
%0 Journal Article
%A Bamón, Rodrigo
%A Flores, Isabel
%A del Pino, Manuel
%T Ground states of semilinear elliptic equations : a geometric approach
%J Annales de l'I.H.P. Analyse non linéaire
%D 2000
%P 551-581
%V 17
%N 5
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/
%G en
%F AIHPC_2000__17_5_551_0
Bamón, Rodrigo; Flores, Isabel; del Pino, Manuel. Ground states of semilinear elliptic equations : a geometric approach. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 5, pp. 551-581. http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/

[1] Clemons C.B., Jones C.K.R.T., A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal. 24 (1993) 436-443. | MR | Zbl

[2] Fowler R., Further studies of Emden's and similar differential equations, Quart. J. Math. 2 (1931) 259-288. | Zbl

[3] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. | MR | Zbl

[4] Gidas B., Ni W.-M., Nirenberg L., Symmetry properties of positive solutions of nonlinear elliptic equations in RN, Adv. Math. Studies 7A (1981) 369-402. | MR | Zbl

[5] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR | Zbl

[6] Gidas B., Caffarelli L., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (3) (1989) 271-297. | MR | Zbl

[7] Hirsch M., Pugh C., Schub M., Invariant Manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, New York, 1977. | MR | Zbl

[8] Johnson R., Pan X., Yi Y., The Melnikov method and elliptic equations with critical exponent, Indiana Univ. Math. J. 43 (1994) 1045-1077. | MR | Zbl

[9] Johnson R., Pan X., Yi Y., Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Eqnuations 18 (1993) 977-1019. | MR | Zbl

[10] Lin C.-S., Ni W.-M., A counterexample to the nodal line conjecture and a related semilinear equation, Proc. Amer. Math. 102 (2) (1988) 271-277. | MR | Zbl

[11] Smoller J., Shock Waves and Reaction Diffusion Equations, 2nd edn., Springer-Verlag, New York, 1994. | MR | Zbl