@article{AIHPC_2000__17_5_551_0, author = {Bam\'on, Rodrigo and Flores, Isabel and del Pino, Manuel}, title = {Ground states of semilinear elliptic equations : a geometric approach}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {551--581}, publisher = {Gauthier-Villars}, volume = {17}, number = {5}, year = {2000}, mrnumber = {1791878}, zbl = {0988.35054}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/} }
TY - JOUR AU - Bamón, Rodrigo AU - Flores, Isabel AU - del Pino, Manuel TI - Ground states of semilinear elliptic equations : a geometric approach JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 551 EP - 581 VL - 17 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/ LA - en ID - AIHPC_2000__17_5_551_0 ER -
%0 Journal Article %A Bamón, Rodrigo %A Flores, Isabel %A del Pino, Manuel %T Ground states of semilinear elliptic equations : a geometric approach %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 551-581 %V 17 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/ %G en %F AIHPC_2000__17_5_551_0
Bamón, Rodrigo; Flores, Isabel; del Pino, Manuel. Ground states of semilinear elliptic equations : a geometric approach. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 5, pp. 551-581. http://archive.numdam.org/item/AIHPC_2000__17_5_551_0/
[1] A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal. 24 (1993) 436-443. | MR | Zbl
, ,[2] Further studies of Emden's and similar differential equations, Quart. J. Math. 2 (1931) 259-288. | Zbl
,[3] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. | MR | Zbl
, ,[4] Symmetry properties of positive solutions of nonlinear elliptic equations in RN, Adv. Math. Studies 7A (1981) 369-402. | MR | Zbl
, , ,[5] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR | Zbl
, ,[6] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (3) (1989) 271-297. | MR | Zbl
, , ,[7] Invariant Manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, New York, 1977. | MR | Zbl
, , ,[8] The Melnikov method and elliptic equations with critical exponent, Indiana Univ. Math. J. 43 (1994) 1045-1077. | MR | Zbl
, , ,[9] Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Eqnuations 18 (1993) 977-1019. | MR | Zbl
, , ,[10] A counterexample to the nodal line conjecture and a related semilinear equation, Proc. Amer. Math. 102 (2) (1988) 271-277. | MR | Zbl
, ,[11] Shock Waves and Reaction Diffusion Equations, 2nd edn., Springer-Verlag, New York, 1994. | MR | Zbl
,