Existence results for semilinear elliptic equations with small measure data
Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 1, pp. 1-11.
@article{AIHPC_2002__19_1_1_0,
     author = {Grenon, Nathalie},
     title = {Existence results for semilinear elliptic equations with small measure data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--11},
     publisher = {Elsevier},
     volume = {19},
     number = {1},
     year = {2002},
     zbl = {1011.35054},
     mrnumber = {1902548},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/}
}
TY  - JOUR
AU  - Grenon, Nathalie
TI  - Existence results for semilinear elliptic equations with small measure data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2002
DA  - 2002///
SP  - 1
EP  - 11
VL  - 19
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/
UR  - https://zbmath.org/?q=an%3A1011.35054
UR  - https://www.ams.org/mathscinet-getitem?mr=1902548
LA  - en
ID  - AIHPC_2002__19_1_1_0
ER  - 
%0 Journal Article
%A Grenon, Nathalie
%T Existence results for semilinear elliptic equations with small measure data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2002
%P 1-11
%V 19
%N 1
%I Elsevier
%G en
%F AIHPC_2002__19_1_1_0
Grenon, Nathalie. Existence results for semilinear elliptic equations with small measure data. Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 1, pp. 1-11. http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/

[1] Adams D.R., Pierre M., Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, Grenoble 41 (1991) 117-135. | Numdam | MR | Zbl

[2] Baras P., Pierre M., Critère d'existence de solutions positives pour des équations semilinéaires non monotones, Ann. Inst. H. Poincaré, Analyse Non Linéaire 2 (1985) 185-212. | Numdam | MR | Zbl

[3] Benilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L., An L1 theory of existence uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241-273. | Numdam | MR | Zbl

[4] Brezis H., Cabré X., Some simple nonlinear PDE's without solutions, Bolletino U.M.I. 1-B (1998) 223-262. | MR | Zbl

[5] Boccardo L., Gallouët T., Orsina L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 539-551. | Numdam | MR | Zbl

[6] Boccardo L., Murat F., Puel J.P., Existence of bounded solutions for nonlinear elliptic unilateral problem, Ann. di Mat. Pura ed Appl. 152 (1988) 183-196. | MR | Zbl

[7] Dal Maso G., Murat F., Orsina L., Prignet A., Definition and existence of renormalized solutions of elliptic equations with general measure data, C. R. Acad. Sci. Paris Série I 325 (1997) 481-486. | MR | Zbl

[8] Dal Maso G., Murat F., Orsina L., Prignet A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuol. Norm. Pisa (4) XXVIII (1999) 741-808. | Numdam | MR | Zbl

[9] Ferone V., Murat F., Nonlinear problems having natural growth in the gradient: an existence result when the source term is small, to appear. | MR | Zbl

[10] Fukushima M., Sato K., Taniguchi S., On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math. 28 (1991) 517-535. | MR | Zbl

[11] Kalton N.J., Verbitsky E., Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (9) 3441-3497. | MR | Zbl

[12] Grenon N., Existence and comparison results quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations, to appear. | MR

[13] Grenon N., Lr estimates for degenerate elliptic problems, Pot. Anal., to appear. | MR | Zbl

[14] Grenon-Isselkou N., Mossino J., Existence de solutions bornées pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. 321 (1995) 51-56. | MR | Zbl

[15] Orsina L., Solvability of linear and semilinear eigenvalue problems with L1 data, Rend. Sem. Mat. Univ. Padova 90 (1993). | Numdam | MR | Zbl

[16] Stampacchia G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. | Numdam | MR | Zbl

[17] Talenti G., Linear elliptic P.D.E.'s: Level sets, rearrangements and a priori estimates of solutions, Boll. U.M.I. (6) 4-B (1985) 917-949. | MR | Zbl