@article{AIHPC_2002__19_1_1_0, author = {Grenon, Nathalie}, title = {Existence results for semilinear elliptic equations with small measure data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--11}, publisher = {Elsevier}, volume = {19}, number = {1}, year = {2002}, mrnumber = {1902548}, zbl = {1011.35054}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/} }
TY - JOUR AU - Grenon, Nathalie TI - Existence results for semilinear elliptic equations with small measure data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 1 EP - 11 VL - 19 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/ LA - en ID - AIHPC_2002__19_1_1_0 ER -
Grenon, Nathalie. Existence results for semilinear elliptic equations with small measure data. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 1-11. http://archive.numdam.org/item/AIHPC_2002__19_1_1_0/
[1] Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, Grenoble 41 (1991) 117-135. | Numdam | MR | Zbl
, ,[2] Critère d'existence de solutions positives pour des équations semilinéaires non monotones, Ann. Inst. H. Poincaré, Analyse Non Linéaire 2 (1985) 185-212. | Numdam | MR | Zbl
, ,[3] An L1 theory of existence uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241-273. | Numdam | MR | Zbl
, , , , , ,[4] Some simple nonlinear PDE's without solutions, Bolletino U.M.I. 1-B (1998) 223-262. | MR | Zbl
, ,[5] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 539-551. | Numdam | MR | Zbl
, , ,[6] Existence of bounded solutions for nonlinear elliptic unilateral problem, Ann. di Mat. Pura ed Appl. 152 (1988) 183-196. | MR | Zbl
, , ,[7] Definition and existence of renormalized solutions of elliptic equations with general measure data, C. R. Acad. Sci. Paris Série I 325 (1997) 481-486. | MR | Zbl
, , , ,[8] Renormalized solutions of elliptic equations with general measure data, Ann. Scuol. Norm. Pisa (4) XXVIII (1999) 741-808. | Numdam | MR | Zbl
, , , ,[9] Ferone V., Murat F., Nonlinear problems having natural growth in the gradient: an existence result when the source term is small, to appear. | MR | Zbl
[10] On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math. 28 (1991) 517-535. | MR | Zbl
, , ,[11] Kalton N.J., Verbitsky E., Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (9) 3441-3497. | MR | Zbl
[12] Grenon N., Existence and comparison results quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations, to appear. | MR
[13] Grenon N., Lr estimates for degenerate elliptic problems, Pot. Anal., to appear. | MR | Zbl
[14] Existence de solutions bornées pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. 321 (1995) 51-56. | MR | Zbl
, ,[15] Solvability of linear and semilinear eigenvalue problems with L1 data, Rend. Sem. Mat. Univ. Padova 90 (1993). | Numdam | MR | Zbl
,[16] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. | Numdam | MR | Zbl
,[17] Linear elliptic P.D.E.'s: Level sets, rearrangements and a priori estimates of solutions, Boll. U.M.I. (6) 4-B (1985) 917-949. | MR | Zbl
,