Monotonicity and separation for the Mumford-Shah problem
Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 5, pp. 631-682.
@article{AIHPC_2002__19_5_631_0,
     author = {David, Guy and L\'eger, Jean-Christophe},
     title = {Monotonicity and separation for the {Mumford-Shah} problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {631--682},
     publisher = {Elsevier},
     volume = {19},
     number = {5},
     year = {2002},
     zbl = {1038.49022},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2002__19_5_631_0/}
}
TY  - JOUR
AU  - David, Guy
AU  - Léger, Jean-Christophe
TI  - Monotonicity and separation for the Mumford-Shah problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2002
SP  - 631
EP  - 682
VL  - 19
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/item/AIHPC_2002__19_5_631_0/
LA  - en
ID  - AIHPC_2002__19_5_631_0
ER  - 
%0 Journal Article
%A David, Guy
%A Léger, Jean-Christophe
%T Monotonicity and separation for the Mumford-Shah problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2002
%P 631-682
%V 19
%N 5
%I Elsevier
%U http://archive.numdam.org/item/AIHPC_2002__19_5_631_0/
%G en
%F AIHPC_2002__19_5_631_0
David, Guy; Léger, Jean-Christophe. Monotonicity and separation for the Mumford-Shah problem. Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 5, pp. 631-682. http://archive.numdam.org/item/AIHPC_2002__19_5_631_0/

[1] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990) 291-322. | MR | Zbl

[2] Ambrosio L., Pallara D., Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 1-38. | EuDML | Numdam | MR | Zbl

[3] Ambrosio L., Fusco N., Pallara D., Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 39-62. | EuDML | Numdam | MR | Zbl

[4] Bonnet A., On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Analyse Non Linéaire 13 (4) (1996) 485-528. | EuDML | Numdam | MR | Zbl

[5] Bonnet A., David G., Cracktip is a global Mumford-Shah minimizer, Astérisque, 274, SMF, 2001. | Numdam | MR | Zbl

[6] Dal Maso G., Morel J.-M., Solimini S., A variational method in image segmentation: Existence and approximation results, Acta Math. 168 (1992) 89-151. | MR | Zbl

[7] David G., C1 arcs for minimizers of the Mumford-Shah functional, SIAM. J. Appl. Math. 56 (3) (1996) 783-888. | MR | Zbl

[8] David G., Semmes S., Analysis of and on Uniformly Rectifiable Sets, AMS Series of Mathematical Surveys and Monographs, 38, 1993. | MR | Zbl

[9] David G., Semmes S., On the singular sets of minimizers of the Mumford-Shah functional, J. Math. Pures Appl. 75 (1996) 299-342. | MR | Zbl

[10] De Giorgi E., Problemi con discontinuità libera, Int. Symp. Renato Caccioppoli, Napoli, Sept. 20-22, 1989, Ricerche Mat. (suppl.) 40 (1991) 203-214. | Zbl

[11] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal. 108 (1989) 195-218. | MR | Zbl

[12] Falconer K., The Geometry of Fractal Sets, Cambridge University Press, 1984. | MR | Zbl

[13] Federer H., Geometric Measure Theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag, 1969. | MR | Zbl

[14] Hardy G., Littlewood J.E., Pólya G., Inequalities, Cambridge University Press, 1952. | JFM | MR

[15] Léger J.-C., Flatness and finiteness in the Mumford-Shah problem, J. Math. Pures Appl. (9) 78 (4) (1999) 431-459. | MR | Zbl

[16] Lops F.A., Maddalena F., Solimini S., Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001) 639-673. | Numdam | MR | Zbl

[17] Maddalena F., Solimini S., Blow-up techniques and regularity near the boundary for free discontinuity problems, Advanced Nonlinear Studies 1 (2) (2001). | MR | Zbl

[18] Mattila P., Geometry of Sets and Measures in Euclidean Space, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995. | MR | Zbl

[19] Mumford D., Shah J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989) 577-685. | MR | Zbl

[20] Newman M.H.A., Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961. | MR | Zbl