@article{AIHPC_2003__20_1_87_0, author = {Desjardins, B. and Grenier, E.}, title = {Linear instability implies nonlinear instability for various types of viscous boundary layers}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {87--106}, publisher = {Elsevier}, volume = {20}, number = {1}, year = {2003}, mrnumber = {1958163}, zbl = {01901028}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2003__20_1_87_0/} }
TY - JOUR AU - Desjardins, B. AU - Grenier, E. TI - Linear instability implies nonlinear instability for various types of viscous boundary layers JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 87 EP - 106 VL - 20 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2003__20_1_87_0/ LA - en ID - AIHPC_2003__20_1_87_0 ER -
%0 Journal Article %A Desjardins, B. %A Grenier, E. %T Linear instability implies nonlinear instability for various types of viscous boundary layers %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 87-106 %V 20 %N 1 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2003__20_1_87_0/ %G en %F AIHPC_2003__20_1_87_0
Desjardins, B.; Grenier, E. Linear instability implies nonlinear instability for various types of viscous boundary layers. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 1, pp. 87-106. http://archive.numdam.org/item/AIHPC_2003__20_1_87_0/
[1] Reynolds.m a package to compute critical Reynolds numbers, 1998 , http://www.dmi.ens.fr/equipes/edp/Reynolds/reynolds.html.
, ,[2] Stability of mixed Ekman-Hartmann boundary layers, Nonlinearity 12 (2) (1999) 181-199. | MR | Zbl
, , ,[3] Instability of Ekman-Hartmann boundary layers, with application to the fluid flow near the core-mantle boundary, Physics of the Earth and Planetary Interiors 123 (2001) 15-26.
, , ,[4] Nonlinear instability in an ideal fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 187-209. | Numdam | MR | Zbl
, , ,[5] Study of boundary conditions for a strictly hyperbolic system via parabolic approximation, C. R. Acad. Sci. Paris Ser. I Math. 319 (4) (1994) 377-382. | MR | Zbl
, ,[6] The Theory of Rotating Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, 1969. | Zbl
,[7] On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091. | MR | Zbl
,[8] Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations 143 (1) (1998) 110-146. | MR | Zbl
, ,[9] Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations 22 (1997) 953-975. | MR | Zbl
, ,[10] Instability of periodic BGK equilibria, Comm. Pure Appl. Math. 48 (1995) 861-894. | MR | Zbl
, ,[11] Nonlinear instability of double-humped equilibria, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 339-352. | Numdam | MR | Zbl
, ,[12] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, Berlin, 1981. | MR | Zbl
,[13] Bifurcation of the stationary Ekman flow into a stable periodic flow, Arch. Rational Mech. Anal. 68 (3) (1978) 227-256. | MR | Zbl
, , ,[14] On the instability of the Ekman boundary layer, J. Atmos. Sci. 23 (1966) 481-494.
,[15] Compressible Fluid Flows Systems of Conservation Laws in Several Variables, Appl. Math. Sci., 53, Springer, Berlin, 1984. | MR | Zbl
,[16] L1 -stability of travelling waves in scalar conservation laws, Exp. No. VIII, 13 pp., Semin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau, 1999. | Numdam | MR | Zbl
,[17] Systèmes de lois de conservations, I et II, Diderot Editeur, Paris, 1996. | MR
,[18] On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math. 36 (1983) 705-754. | MR | Zbl
,[19] Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl. 30 (1970) 264-279. | MR | Zbl
,[20] Non-stationary flow of a perfect non-viscous fluid, Zh. Vych. Math. 3 (1963) 1032-1066.
,