A critical fractional equation with concave–convex power nonlinearities
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, p. 875-900
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this work we study the following fractional critical problem (P λ )={(-Δ) s u=λu q +u 2 s -1 ,u>0inΩ,u=0in n Ω, where Ω n is a regular bounded domain, λ>0, 0<s<1 and n>2s. Here (-Δ) s denotes the fractional Laplace operator defined, up to a normalization factor, by -(-Δ) s u(x)= n u(x+y)+u(x-y)-2u(x) |y| n+2s dy,x n . Our main results show the existence and multiplicity of solutions to problem (P λ ) for different values of λ. The dependency on this parameter changes according to whether we consider the concave power case (0<q<1) or the convex power case (1<q<2 s -1). These two cases will be treated separately.

DOI : https://doi.org/10.1016/j.anihpc.2014.04.003
Classification:  49J35,  35A15,  35S15,  47G20,  45G05
Keywords: Fractional Laplacian, Critical nonlinearities, Convex–concave nonlinearities, Variational techniques, Mountain Pass Theorem
@article{AIHPC_2015__32_4_875_0,
     author = {Barrios, B. and Colorado, E. and Servadei, R. and Soria, F.},
     title = {A critical fractional equation with concave--convex power nonlinearities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {4},
     year = {2015},
     pages = {875-900},
     doi = {10.1016/j.anihpc.2014.04.003},
     zbl = {1350.49009},
     mrnumber = {3390088},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_4_875_0}
}
Barrios, B.; Colorado, E.; Servadei, R.; Soria, F. A critical fractional equation with concave–convex power nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 875-900. doi : 10.1016/j.anihpc.2014.04.003. http://www.numdam.org/item/AIHPC_2015__32_4_875_0/

[1] B. Abdellaoui, E. Colorado, I. Peral, Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Adv. Differ. Equ. 11 no. 6 (2006), 667 -720 | MR 2238024 | Zbl 1176.46035

[2] R. Adams, Sobolev Spaces, Academic Press (1975) | MR 450957 | Zbl 0314.46030

[3] S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Differ. Equ. 4 (1999), 813 -842 | MR 1729392 | Zbl 0952.35052

[4] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 no. 2 (1994), 519 -543 | MR 1276168 | Zbl 0805.35028

[5] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349 -381 | MR 370183 | Zbl 0273.49063

[6] D. Applebaum, Lévy Processes and Stochastic Calculus, Camb. Stud. Adv. Math. vol. 116 , Cambridge University Press, Cambridge (2009) | MR 2512800 | Zbl 1200.60001

[7] B. Barrios, E. Colorado, A. De Pablo, U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differ. Equ. 252 (2012), 6133 -6162 | MR 2911424 | Zbl 1245.35034

[8] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, http://dx.doi.org/10.1142/S0219199713500466 | Zbl 1295.35376

[9] J. Bertoin, Lévy Processes, Camb. Tracts Math. vol. 121 , Cambridge University Press, Cambridge (1996) | MR 1406564 | Zbl 0861.60003

[10] L. Boccardo, M. Escobedo, I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 no. 11 (1995), 1639 -1648 | MR 1328589 | Zbl 0828.35042

[11] C. Brändle, E. Colorado, A. De Pablo, U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb. A 143 (2013), 39 -71 | MR 3023003 | Zbl 1290.35304

[12] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 no. 3 (1983), 486 -490 | MR 699419 | Zbl 0526.46037

[13] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 no. 4 (1983), 437 -477 | MR 709644 | Zbl 0541.35029

[14] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052 -2093 | MR 2646117 | Zbl 1198.35286

[15] L. Caffarelli, J.M. Roquejoffre, Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. 12 (2010), 1151 -1179 | MR 2677613 | Zbl 1221.35453

[16] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2003), 1245 -1260 | MR 2354493 | Zbl 1143.26002

[17] F. Charro, E. Colorado, I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side, J. Differ. Equ. 246 no. 11 (2009), 4221 -4248 | MR 2517768 | Zbl 1171.35049

[18] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468 -507 | MR 1971262 | Zbl 1034.35041

[19] E. Colorado, A. De Pablo, U. Sanchez, Perturbations of a critical fractional equation, Pac. J. Math. (2014) | MR 3259761 | Zbl 1304.35745

[20] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, Fl (2004) | MR 2042661 | Zbl 1052.91043

[21] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225 -236 | MR 2064421 | Zbl 1084.26009

[22] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521 -573 | MR 2944369 | Zbl 1252.46023

[23] M.M. Fall, T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 no. 8 (2012), 2205 -2227 | MR 2964681 | Zbl 1260.35050

[24] A. Fiscella, R. Servade, E. Valdinoci, Density properties for fractional Sobolev spaces, preprint, 2013. | MR 3310082

[25] J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Am. Math. Soc. 323 no. 2 (1991), 877 -895 | MR 1083144 | Zbl 0729.35051

[26] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 no. 5 (1989), 321 -330 | Numdam | MR 1030853 | Zbl 0711.58008

[27] A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics Los Alamos, NM, 1995 Physica D 98 no. 2–4 (1996), 515 -522 | MR 1422288 | Zbl 0899.76105

[28] V. Maz'Ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren Math. Wiss. vol. 342 , Springer, Heidelberg (2011) | MR 2777530

[29] N. Meyers, J. Serrin, H=W , Proc. Natl. Acad. Sci. USA 51 (1964), 1055 -1056 | MR 164252 | Zbl 0123.30501

[30] G. Molica Bisci, R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl 1322.49021

[31] E. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 no. 2 (1983), 349 -374 | MR 717827 | Zbl 0527.42011

[32] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 no. 1 (1985), 145 -201 | MR 834360 | Zbl 0704.49005

[33] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 no. 2 (1985), 45 -121 | MR 850686 | Zbl 0704.49006

[34] G. Palatucci, A. Pisante, Improved Sobolev embeddings, profile decomposition and concentration–compactness for fractional Sobolev spaces, arXiv:1302.5923 | MR 3216834 | Zbl 1296.35064

[35] J. Serra, X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 no. 3 (2014), 275 -302 | MR 3168912 | Zbl 1285.35020

[36] J. Serra, X. Ros-Oton, The Pohozaev identity for the fractional Laplacian, arXiv:1207.5986 [math.AP] | MR 3211861 | Zbl 06343915

[37] R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 2 (2013), 235 -270 | MR 3089742 | Zbl 1273.49011

[38] R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 no. 1 (2014), 251 -267 | MR 3237009

[39] R. Servadei, E. Valdinoci, Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam. 29 (2013), 1091 -1126 | MR 3090147 | Zbl 1275.49016

[40] R. Servadei, E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887 -898 | MR 2879266 | Zbl 1234.35291

[41] R. Servadei, E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc. (2014) | MR 3271254 | Zbl 1323.35202

[42] R. Servadei, E. Valdinoci, A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 no. 6 (2013), 2445 -2464 | MR 3060890 | Zbl 1302.35413

[43] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl 1338.35481

[44] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 no. 1 (2014), 133 -154 | MR 3161511 | Zbl 1292.35315

[45] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 no. 1 (2007), 67 -112 | MR 2270163 | Zbl 1141.49035

[46] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princet. Math. Ser. vol. 30 , Princeton University Press, Princeton, NJ (1970) | MR 290095 | Zbl 0207.13501

[47] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Ihrer Grenzgeb. vol. 3 , Springer-Verlag, Berlin, Heidelberg (1990) | MR 1078018 | Zbl 0746.49010

[48] J. Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ. 36 no. 1–2 (2011), 21 -41 | MR 2819627 | Zbl 1248.35078

[49] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. Se MA 49 (2009), 33 -44 | MR 2584076 | Zbl 1242.60047

[50] L. Vlahos, H. Isliker, Y. Kominis, K. Hizonidis, Normal and anomalous diffusion: a tutorial, T. Bountis (ed.), Order and Chaos, 10th Volume, Patras University Press (2008)

[51] M. Willem, Minimax Theorems, Prog. Nonlinear Differ. Equ. Appl. vol. 24 , Birkhäuser, Boston (1996) | MR 1400007 | Zbl 0856.49001