@article{ASNSP_1968_3_22_1_107_0, author = {Kor\'anyi, A. and Stein, E. M.}, title = {Fatou's theorem for generalized halfplanes}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {107--112}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 22}, number = {1}, year = {1968}, mrnumber = {279322}, zbl = {0169.41402}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1968_3_22_1_107_0/} }
TY - JOUR AU - Korányi, A. AU - Stein, E. M. TI - Fatou's theorem for generalized halfplanes JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1968 SP - 107 EP - 112 VL - 22 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1968_3_22_1_107_0/ LA - en ID - ASNSP_1968_3_22_1_107_0 ER -
%0 Journal Article %A Korányi, A. %A Stein, E. M. %T Fatou's theorem for generalized halfplanes %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1968 %P 107-112 %V 22 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1968_3_22_1_107_0/ %G en %F ASNSP_1968_3_22_1_107_0
Korányi, A.; Stein, E. M. Fatou's theorem for generalized halfplanes. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 22 (1968) no. 1, pp. 107-112. http://archive.numdam.org/item/ASNSP_1968_3_22_1_107_0/
[1] Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181-218. | MR | Zbl
and ,[2] The Poisson integral for generalized halfplanes and bounded symmetric domains, Ann. of Math. 82 (1965), 332-350. | MR | Zbl
,[3] Harmonic functions on Hermitian hyperbolic space, to appear in Trans. Amer. Math. Soc. | MR | Zbl
,[4] Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), 351-353. | MR | Zbl
,[5] Maximal functions and Fatou's theorem, C.I.M.E. Summer course on «Homugeneous bounded domains », Cremonese 1967.
,[6] Almost everywhere convergecce of Poisson integrals on tube domains over cones, Trane. Amer. Math. Soc. 129 (1967), 283-307. | MR | Zbl
,[7] Trigonmetrie series, Cambridge University Press 1959. | MR | Zbl
,