A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 4, pp. 555-566.
@article{ASNSP_1988_4_15_4_555_0,
     author = {Brummelhuis, R. G. M.},
     title = {A {Bochner-Martinelli} formula for vector fields which satisfy the generalized {Cauchy-Riemann} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {555--566},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 15},
     number = {4},
     year = {1988},
     mrnumber = {1029854},
     zbl = {0693.32004},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1988_4_15_4_555_0/}
}
TY  - JOUR
AU  - Brummelhuis, R. G. M.
TI  - A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1988
SP  - 555
EP  - 566
VL  - 15
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1988_4_15_4_555_0/
LA  - en
ID  - ASNSP_1988_4_15_4_555_0
ER  - 
%0 Journal Article
%A Brummelhuis, R. G. M.
%T A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1988
%P 555-566
%V 15
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1988_4_15_4_555_0/
%G en
%F ASNSP_1988_4_15_4_555_0
Brummelhuis, R. G. M. A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 4, pp. 555-566. http://archive.numdam.org/item/ASNSP_1988_4_15_4_555_0/

[1] L.A. Aizenberg - A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Translations of mathematical monographs, vol. 58, American Math. Soc., 1983. | MR | Zbl

[2] H. Burkhardt - W.F. Meyer, Potential theorie, Encyklopädie der Mathematischen Wissenschaften II A 7b, Leipzig, 1915.

[3] N.M. Günter, Potential theory and its applications to basic problems of mathematical physics, Frederick Ungar publishing Co., New York, 1967. | MR | Zbl

[4] A. Korányi - S. Vagi, Group theoretic remarks on Riesz systems on balls, Proc. Amer. Math. Soc. 85(2), 1982, 200-205. | MR | Zbl

[5] E.M. Stein - G. Weiss. Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971. | MR | Zbl