@article{ASNSP_1998_4_26_2_285_0, author = {Felmer, Patricio L. and Silva, Elves A. de B.}, title = {Homoclinic and periodic orbits for hamiltonian systems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {285--301}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 26}, number = {2}, year = {1998}, mrnumber = {1631585}, zbl = {0919.58026}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1998_4_26_2_285_0/} }
TY - JOUR AU - Felmer, Patricio L. AU - Silva, Elves A. de B. TI - Homoclinic and periodic orbits for hamiltonian systems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 285 EP - 301 VL - 26 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1998_4_26_2_285_0/ LA - en ID - ASNSP_1998_4_26_2_285_0 ER -
%0 Journal Article %A Felmer, Patricio L. %A Silva, Elves A. de B. %T Homoclinic and periodic orbits for hamiltonian systems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 285-301 %V 26 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1998_4_26_2_285_0/ %G en %F ASNSP_1998_4_26_2_285_0
Felmer, Patricio L.; Silva, Elves A. de B. Homoclinic and periodic orbits for hamiltonian systems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 26 (1998) no. 2, pp. 285-301. http://archive.numdam.org/item/ASNSP_1998_4_26_2_285_0/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | MR | Zbl
- ,[2] Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1987), 242-271. | EuDML | Numdam | MR | Zbl
- ,[3] Index estimates and critical points offunctional not satisfying Palais Smale, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 17 (1990), 569-581. | EuDML | Numdam | MR | Zbl
- - ,[4] The topological degree at a critical point of mountain pass type, Proc. Sympos. Pure Math. 45 (1986), 501-509. | MR | Zbl
,[5] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
,[6] Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 33-38. | MR | Zbl
,[7] Critical point theory and applications to differential equations: a survey, in: "Topological Nonlinear Analysis. Degree, Singularity and variations", Matzeu and Vignoli Eds., Birkäuser, 1995. | MR | Zbl
,[8] Morse index estimates in minimax theorems, Manuscripta Math. 63 (1989), 421-454. | EuDML | MR | Zbl
,