@article{ASNSP_2001_4_30_3-4_499_0, author = {Grunau, Hans-Christoph and Sweers, Guido}, title = {Optimal conditions for anti-maximum principles}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {499--513}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {3-4}, year = {2001}, mrnumber = {1896075}, zbl = {1072.35066}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/} }
TY - JOUR AU - Grunau, Hans-Christoph AU - Sweers, Guido TI - Optimal conditions for anti-maximum principles JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 499 EP - 513 VL - 30 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/ LA - en ID - ASNSP_2001_4_30_3-4_499_0 ER -
%0 Journal Article %A Grunau, Hans-Christoph %A Sweers, Guido %T Optimal conditions for anti-maximum principles %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 499-513 %V 30 %N 3-4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/ %G en %F ASNSP_2001_4_30_3-4_499_0
Grunau, Hans-Christoph; Sweers, Guido. Optimal conditions for anti-maximum principles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 3-4, pp. 499-513. http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/
[1] Sobolev Spaces", Academic Press, New York etc., 1975. | MR | Zbl
, "[2] Hopf's lemma and anti-maximum principle in general domains, J. Differ. Equations 119 (1995), 450-472. | MR | Zbl
,[3] Sullefunzioni di Green d'ordine m, Rend. Circ. Mat. Palermo 20 (1905), 97-135. | JFM
,[4] An anti-maximum principle for second order elliptic operators, J. Differ. Equations 34 (1979), 218-229. | MR | Zbl
- ,[5] Uniform anti-maximum principles, J. Differential Equations 164 (2000), 118-154. | MR | Zbl
- ,[6] Uniform anti-maximum principles for polyharmonic operators, Proc. Amer. Math. Soc. 129 (2001), 467-474. | MR | Zbl
- ,[7] H.-CH. GRUNAU, Critical dimensions and higher order Sobolev inequalities with remainder terms, NODEA 8 (2001), 35-44. | MR | Zbl
-[8] Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), 589-626. | MR | Zbl
- ,[9] Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr.179 (1996), 89-102. | MR | Zbl
- ,[10] The maximum principle and positive principal eigenfunctions for polyharmonic equations, In: G. Caristi, E. Mitidieri (eds.), "Reaction Diffusion Systems", Marcel Dekker Inc., New York, Lecture Notes in Pure and Appl. Math. 194 (1998), 163-182. | MR | Zbl
- ,[11] Positivity properties of elliptic boundary value problems of higher order, Proc. 2nd World Congress of Nonlinear Analysts, Nonlinear Analysis, T.M.A. 30 (1997), 5251-5258. | MR | Zbl
- ,[12] Sharp estimates for iterated Greenfunctions, to appear in: Proc. Roy. Soc. Edinburgh Sect. A. | MR | Zbl
- ,[13] Über Integralgleichungen mit positivem Kern, Math. 141 (1912), 235-244. | EuDML | JFM
,[14] Positive Linear Systems- The Method of Positive Operators", Heldermann Verlag, Berlin, 1989. | MR | Zbl
- - , "[15] Non-homogeneous Boundary Value Problems and Applications I", Springer, Berlin, 1972. | Zbl
- , "[16] Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann. 314 (1999), 555-590. | MR | Zbl
,[17] On the maximum and anti-maximum principles, Differential equations and mathematical physics (Birmingham, AL, 1999), 323-338, AMS/IP Stud. Adv. Math., 16, Amer. Math. Soc., Providence,RI, 2000. | MR | Zbl
,[18] LN is sharp for the antimaximum principle, J. Differential Equations 134 (1997), 148-153. | MR | Zbl
,[19] An abstract form of maximum and anti-maximum principles of Hopf's type, J. Math. Anal. Appl. 201 (1996), 339-364. | MR | Zbl
,