In this paper we define an action of the Weyl group on the quiver varieties with generic .
@article{ASNSP_2002_5_1_3_649_0, author = {Maffei, Andrea}, title = {A remark on quiver varieties and Weyl groups}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {649--686}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {3}, year = {2002}, zbl = {1143.14309}, mrnumber = {1990675}, language = {en}, url = {archive.numdam.org/item/ASNSP_2002_5_1_3_649_0/} }
Maffei, Andrea. A remark on quiver varieties and Weyl groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 649-686. http://archive.numdam.org/item/ASNSP_2002_5_1_3_649_0/
[1] Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598. | MR 958897 | Zbl 0693.16018
- ,[2] Geometry of the moment map for representations of quivers, preprint available at http://www.amsta.leeds.ac.uk/~pmtwc. | MR 1834739 | Zbl 1037.16007
,[3] Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), 467-479. | MR 1758750 | Zbl 0993.16011
- ,[4] The length of vectors in representation spaces, In: “Algebraic geometry”. Proc. Summer Meeting Univ. Copenhagen 1978, Vol. 732 of LNM, Springer, 1979, pp. 233-243. | MR 555701 | Zbl 0407.22012
- ,[5] On quiver varieties, Adv. Math. 136 (1998), 141-182. | MR 1623674 | Zbl 0915.17008
,[6] Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), 461-489. | Numdam | MR 1775358 | Zbl 0958.20036
,[7] A remark on quiver varieties and Weyl groups, preprint available at http://xxx.lanl.gov.
,[8] “Quiver varieties”, PhD thesis, Università di Roma “La Sapienza", 1999.
,[9] Stability of homogeneous vector bundles, Boll. Un. Mat. Ital. 7-B (1996), 963-990. | MR 1430162 | Zbl 0885.14024
,[10] “Geometric invariant theory”, Ergebn. der Math., Vol. 34, Springer, third edition, 1994. | MR 1304906 | Zbl 0797.14004
- - ,[11] Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416. | MR 1302318 | Zbl 0826.17026
,[12] Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. | MR 1604167 | Zbl 0970.17017
,[13] “Introduction to moduli problems and orbit spaces”, Tata Lectures, Vol. 51, Springer, 1978. | MR 546290 | Zbl 0411.14003
,