We consider -tuples of commuting operators on a Banach space with real spectra. The holomorphic functional calculus for is extended to algebras of ultra-differentiable functions on , depending on the growth of , , when . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
@article{ASNSP_2002_5_1_4_925_0, author = {Andersson, Mats and Berndtsson, Bo}, title = {Non-holomorphic functional calculus for commuting operators with real spectrum}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {925--955}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991008}, zbl = {1099.47505}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_4_925_0/} }
TY - JOUR AU - Andersson, Mats AU - Berndtsson, Bo TI - Non-holomorphic functional calculus for commuting operators with real spectrum JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 925 EP - 955 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_4_925_0/ LA - en ID - ASNSP_2002_5_1_4_925_0 ER -
%0 Journal Article %A Andersson, Mats %A Berndtsson, Bo %T Non-holomorphic functional calculus for commuting operators with real spectrum %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 925-955 %V 1 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_4_925_0/ %G en %F ASNSP_2002_5_1_4_925_0
Andersson, Mats; Berndtsson, Bo. Non-holomorphic functional calculus for commuting operators with real spectrum. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 925-955. http://archive.numdam.org/item/ASNSP_2002_5_1_4_925_0/
[1] Explicit formulae for Taylor's functional calculus, Multivariable operator theory (Seattle, WA, 1993), 1-5, Contemp. Math. 185, AMS. Providence, RI. 1995. | MR | Zbl
,[2] Integral formulae for special cases of Taylor's functional calculus, Studia Math. 105 (1993), 51-68. | MR | Zbl
,[3] Taylor's functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 6 (1997), 247-258. | MR | Zbl
,[4] Correction to Taylor's functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 2 (1998), 123-124. | MR | Zbl
,[5] Almost holomorphic extensions of ultradifferentiable functions, to appear in J. d'Analyse. | MR | Zbl
- ,[6] On quasianalyticity and general distributions, Lecture notes, Stanford, 1961.
,[7] Holomorphic approximation of ultradifferentiable functions, Math. Ann. 257 (1981), 293-316. | MR | Zbl
,[8] Extension of analytic functional calculus mappings and duality by -closed forms with growth, Math. Ann. 261 (1982), 185-200. | MR | Zbl
,[9] An operator calculus based on the Cauchy-Green formula 30 (1972), 33-39. | MR | Zbl
,[10] “Spectral Decompositions and Analytic Sheaves”, Clarendon Press, Oxford, 1996. | MR | Zbl
- ,[11] “The Analysis of Linear Partial Differential Operators I”, Sec. Ed. Springer-Verlag, 1990. | Zbl
,[12] Vasilescu-Martinelli formula for operators in Banach spaces, Studia Math. 113 (1995), 127-139. | MR | Zbl
,[13] Calcul fonctionnel dependant de la croissance des coefficients spectraux, Ann. Inst. Fourier (Grenoble) 27 (1977), 169-199. | Numdam | MR | Zbl
,[14] The superposition property for Taylor's functional calculus, J. Operator Theory 7 (1982), 149-155. | MR | Zbl
,[15] “Functional Analysis”, McGraw-Hill, 1973. | MR | Zbl
,[16] On non-holomorphic functional calculus for commuting operators, To appear in Math. Scand. | MR | Zbl
,[17] A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. | MR | Zbl
,[18] The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. | MR | Zbl
,[19] “Analytic functional calculus and spectral decompositions”, Mathematics and its Applications (East European Series), D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1982. | MR | Zbl
,[20] Calcul symbolique lié à la croissance de la résolvant, Rend. Sem. Mat. Fis. Milano, 34 (1964). | MR | Zbl
,[21] The existence of invariant subspaces, Duke Math. J. 19 (1952), 615-622. | MR | Zbl
,