In this paper, we use -convergence techniques to study the following variational problem
@article{ASNSP_2003_5_2_1_151_0, author = {Amar, Micol and Garroni, Adriana}, title = {$\Gamma $-convergence of concentration problems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {151--179}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {1}, year = {2003}, mrnumber = {1990977}, zbl = {1121.35048}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2003_5_2_1_151_0/} }
TY - JOUR AU - Amar, Micol AU - Garroni, Adriana TI - $\Gamma $-convergence of concentration problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 151 EP - 179 VL - 2 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2003_5_2_1_151_0/ LA - en ID - ASNSP_2003_5_2_1_151_0 ER -
%0 Journal Article %A Amar, Micol %A Garroni, Adriana %T $\Gamma $-convergence of concentration problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 151-179 %V 2 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2003_5_2_1_151_0/ %G en %F ASNSP_2003_5_2_1_151_0
Amar, Micol; Garroni, Adriana. $\Gamma $-convergence of concentration problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 151-179. http://archive.numdam.org/item/ASNSP_2003_5_2_1_151_0/
[1] “Critical points at infinity in some variational problems”, Vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, 1989. | MR | Zbl
,[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations and , Siam Rev., 38 (1996), 191-238. | MR | Zbl
- ,[3] Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications”, 13, Birkhäuser Boston Inc., Boston, MA, 1994. | MR | Zbl
- - ,[4] -convergence for beginners, To appear, 2002. | MR
,[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | MR | Zbl
- ,[6] Asymptotic for elliptic equations involving critical growth, In: “Partial differential equations and the calculus of variation”, Vol. I, 1 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1989, 149-192. | MR | Zbl
- ,[7] “An introduction to -convergence”, Birkhäuser, Boston, 1992. | MR | Zbl
,[8] Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains, Proc. Royal Soc. Edinburgh 125A (1995), 99-114. | MR | Zbl
- ,[9] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. | MR | Zbl
- ,[10] Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia 3 (1979), 63-101.
- ,[11] “Variational problems with concentration”, Birkhäuser, 1999. | MR | Zbl
,[12] Concentration of low energy extremals: identification of concentration points, Calc. Var. Partial Differential Equations 14 (2002), 483-516. | MR | Zbl
- - ,[13] Radial simmetry and decay rate of variational ground states in the zero mass case, Siam J. Math. Anal. 29 (1998), 712-719. | MR | Zbl
- ,[14] Concentration of low energy extremals, Ann. Inst. H. Poincaré Anal. Non Linéaire (3) 10 (1999), 269-298. | Numdam | MR | Zbl
- ,[15] Concentration phenomena for the volume functional in unbounded domains: identification of concentration points, to appear on J. Funct. Anal., 2002 | MR
- ,[16] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 2 (1991), 159-174. | Numdam | MR | Zbl
,[17] The concentration-compactness principle in the calculus of variations. The limit case., Rev. Mat. Iberoamericana 1 (1985), 145-201. | MR | Zbl
,[18] Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math. (1) 65 (1989), 19-37. | MR | Zbl
,[19] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 2 (1984), 479-495. | MR | Zbl
,