Let be the open upper light cone in with respect to the Lorentz product. The connected linear Lorentz group acts on and therefore diagonally on the -fold product where We prove that the extended future tube is a domain of holomorphy.
@article{ASNSP_2004_5_3_1_39_0, author = {Heinzner, Peter and Sch\"utzdeller, Patrick}, title = {The extended future tube conjecture for {SO(1,} ${\it {n}}$)}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {39--52}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064966}, zbl = {1170.32300}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_1_39_0/} }
TY - JOUR AU - Heinzner, Peter AU - SchĂĽtzdeller, Patrick TI - The extended future tube conjecture for SO(1, ${\it {n}}$) JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 39 EP - 52 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_1_39_0/ LA - en ID - ASNSP_2004_5_3_1_39_0 ER -
%0 Journal Article %A Heinzner, Peter %A SchĂĽtzdeller, Patrick %T The extended future tube conjecture for SO(1, ${\it {n}}$) %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 39-52 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_1_39_0/ %G en %F ASNSP_2004_5_3_1_39_0
Heinzner, Peter; SchĂĽtzdeller, Patrick. The extended future tube conjecture for SO(1, ${\it {n}}$). Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 1, pp. 39-52. http://archive.numdam.org/item/ASNSP_2004_5_3_1_39_0/
[B] Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. | MR | Zbl
,[FK] “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. | MR | Zbl
- ,[HW] A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. | Zbl
- ,[He1] Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | MR | Zbl
,[He2] The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. | MR | Zbl
,[HeHuL] Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. | MR | Zbl
- - ,[HeMP] Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. | Numdam | MR | Zbl
- - ,[J] The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. | MR | Zbl
,[Kr] Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. | MR | Zbl
,[N] The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. | MR | Zbl
,[SV] Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179-253. | Zbl
- ,[StW] “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. | MR | Zbl
- ,[W] Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. | MR | Zbl
,[Z] A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. | MR | Zbl
,