In this note we give a characterization of the complex geodesics of the minimal ball in . This answers a question posed by Jarnicki and Pflug (cf. [JP], Example 8.3.10)
@article{ASNSP_2004_5_3_1_53_0, author = {Pflug, Peter and Youssfi, El Hassan}, title = {Complex geodesics of the minimal ball in $\mathbb {C}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {53--66}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064967}, zbl = {1098.32005}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_1_53_0/} }
TY - JOUR AU - Pflug, Peter AU - Youssfi, El Hassan TI - Complex geodesics of the minimal ball in $\mathbb {C}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 53 EP - 66 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_1_53_0/ LA - en ID - ASNSP_2004_5_3_1_53_0 ER -
%0 Journal Article %A Pflug, Peter %A Youssfi, El Hassan %T Complex geodesics of the minimal ball in $\mathbb {C}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 53-66 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_1_53_0/ %G en %F ASNSP_2004_5_3_1_53_0
Pflug, Peter; Youssfi, El Hassan. Complex geodesics of the minimal ball in $\mathbb {C}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 53-66. http://archive.numdam.org/item/ASNSP_2004_5_3_1_53_0/
[E] On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | EuDML | MR | Zbl
,[G] Regular complex geodesics in the domain , In: “Complex Analysis III”, C. A. Berenstein (ed.), Lecture Notes in Math. Vol. 1275, Springer-Verlag, Berlin, 1987, pp. 235-252. | MR | Zbl
,[HP] On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), 107-112. | EuDML | MR | Zbl
- ,[JP] “Invariant Distances and Metrics in Complex Analysis”, de Gruyter Expositions in Mathematics, Walter de Gruyter, 1993. | MR | Zbl
- ,[K] Automorphism group of certain domains with singular boundary, Pacific J. Math. 51 (1991), 54-64. | MR | Zbl
,[MY] The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. Math. 123 (1999), 501-525. | MR | Zbl
- ,[OPY] The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. | EuDML | Numdam | MR | Zbl
- - ,[OY] Proper holomorphic mappings and related automorphism groups, J. Geom. Anal. 7 (1997), 623-636. | MR | Zbl
- ,[PY] The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240-245. | MR | Zbl
- ,[Z] Automorphism group of some special domain in , Univ. Iagel. Acta Math. 33 (1996), 185-189. | MR | Zbl
,