In this paper we deal with the stationary Navier-Stokes problem in a domain with compact Lipschitz boundary and datum in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of , with possible countable exceptional set, provided is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for bounded.
@article{ASNSP_2008_5_7_1_171_0, author = {Russo, Antonio and Starita, Giulio}, title = {On the existence of steady-state solutions to the {Navier-Stokes} system for large fluxes}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {171--180}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {1}, year = {2008}, mrnumber = {2413675}, zbl = {1150.76015}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_1_171_0/} }
TY - JOUR AU - Russo, Antonio AU - Starita, Giulio TI - On the existence of steady-state solutions to the Navier-Stokes system for large fluxes JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 171 EP - 180 VL - 7 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_1_171_0/ LA - en ID - ASNSP_2008_5_7_1_171_0 ER -
%0 Journal Article %A Russo, Antonio %A Starita, Giulio %T On the existence of steady-state solutions to the Navier-Stokes system for large fluxes %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 171-180 %V 7 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_1_171_0/ %G en %F ASNSP_2008_5_7_1_171_0
Russo, Antonio; Starita, Giulio. On the existence of steady-state solutions to the Navier-Stokes system for large fluxes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 171-180. http://archive.numdam.org/item/ASNSP_2008_5_7_1_171_0/
[1] Note on the flux problem for stationary incompressible Navier-Stokes equations in domains with a multiply connected boundary, Acta Appl. Math. 37 (1994), 21-30. | MR | Zbl
and ,[2] Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J. 44 (1995), 1183-1206. | MR | Zbl
and ,[3] A remark on the existence of the Navier-Stokes flow with non-vanishing outflow condition, GAKUTO Internat. Ser. Math. Sci. Appl. 10 (1997), 53-61, | MR | Zbl
and ,[4] Stability analysis of Navier-Stokes flows in annuli, Math. Methods Appl. Sci. 20 (1997), 959-978, | MR | Zbl
, and ,[5] On the existence of steady motions of a viscous flow with nonhomogeneous boundary conditions, Matematiche (Catania) 46 (1991), 503-524. | MR | Zbl
,[6] “An Introduction to the Mathematical Theory of the Navier-Stokes Equations”, Vol. I, II, revised edition, Springer Tracts in Natural Philosophy, C. Truesdell (ed.), Vol. 38, Springer-Verlag, 1998. | MR | Zbl
,[7] Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann. 321 (2001), 955-987. | MR | Zbl
and ,[8] Note on the boundary value problem for the Navier-Stokes equations in 2-D domain with general outflow condition (in Japanese), Memoirs of the Institute of Science and Technology, Meiji University 35 (1997), 95-102.
,[9] General outflow condition for Navier-Stokes system, In: “Recent Topics on Mathematical Theory of Viscous Incompressible fluid”, Lectures Notes in Num. Appl. Anal., Vol. 16, 1998, 209-224. | MR | Zbl
,[10] On the existence of solutions to the stationary Navier-Stokes equations, Ricerche Mat. 52 (2003), 285-348. | MR | Zbl
,[11] A note on the existence of solutions to the Oseen system in Lipschitz domains, J. Math. Fluid Mech. 8 (2006), 64-76. | MR | Zbl
and ,[12] A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc. 123 (1995), 801-811. | MR | Zbl
,[13] V. Sverák and T-P Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows, Comm. Partial Differential Equations 25 (2000), 2107-2117. | MR | Zbl