We study the generalized boundary value problem for nonnegative solutions of
@article{ASNSP_2011_5_10_4_913_0, author = {Marcus, Moshe and Veron, Laurent}, title = {Boundary trace of positive solutions of semilinear elliptic equations in {Lipschitz} domains: the subcritical case}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {913--984}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {4}, year = {2011}, mrnumber = {2932897}, zbl = {1243.35054}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/} }
TY - JOUR AU - Marcus, Moshe AU - Veron, Laurent TI - Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 913 EP - 984 VL - 10 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/ LA - en ID - ASNSP_2011_5_10_4_913_0 ER -
%0 Journal Article %A Marcus, Moshe %A Veron, Laurent %T Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 913-984 %V 10 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/ %G en %F ASNSP_2011_5_10_4_913_0
Marcus, Moshe; Veron, Laurent. Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 913-984. https://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/
[1] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-lineaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206. | EuDML | Numdam | MR | Zbl
[2] S. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR | Zbl
[3] K. Bogdan, Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl. 243 (2000), 326-337. | MR | Zbl
[4] H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris (A-B) 287 (1978), A113–A115. | MR | Zbl
[5] B. E. Dalhberg, Estimates on harmonic measures, Arch. Ration. Mech. Anal. 65 (1977), 275–288. | MR | Zbl
[6] E. B. Dynkin, “Diffusions, Superdiffusions and Partial Differential Equations”, Amer. Math. Soc. Colloquium Publications, 50, Providence, RI, 2002. | MR | Zbl
[7] E. B. Dynkin, “Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations”, University Lecture Series, 34, Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
[8] E. B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a Riemanian manifold and their trace on the boundary, Trans. Amer. Math. Soc. 350 (1998), 4217–4552. | MR | Zbl
[9] J. Fabbri and L. Véron, Singular boundary value problems for nonlinear elliptic equations in non smooth domains, Adv. Differential Equations 1 (1996), 1075–1098. | MR | Zbl
[10] N. Gilbarg and N. S. Trudinger, “Partial Differential Equations of Second Order”, 2nd ed., Springer-Verlag, Berlin/New-York, 1983. | MR | Zbl
[11] A. Gmira and L. Véron, Boundary singularities of solutions of nonlinear elliptic equations, Duke Math. J. 64 (1991), 271–324. | MR | Zbl
[12] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. | MR | Zbl
[13] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, Studies in partial differential equations, MAA Stud. Math. 23, (1982) 1–68. | MR | Zbl
[14] D. S. Jerison and C. E. Kenig, The Dirichlet problems in non-smooth domains, Ann. of Math. 113 (1981), 367–382. | MR | Zbl
[15] C. Kenig and J. Pipher, The
[16] J. B. Keller, On solutions of
[17] J. F. Le Gall, The Brownian snake and solutions of
[18] J. F. Le Gall, “Spatial Branching Processes, Random Snakes and Partial Differential Equations” Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. | MR | Zbl
[19] M. Marcus, Complete classification of the positive solutions of
[20] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. An. 144 (1998), 201–231. | MR | Zbl
[21] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77 (1998), 481–521. | MR | Zbl
[22] M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900. | MR | Zbl
[23] M. Marcus and L. Véron The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. (6) 56 (2003), 689–731. | MR | Zbl
[24] M. Marcus and L. Véron, The precise boundary trace of positive solutions of the equation
[25] M. Marcus and L. Véron, Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains, arXiv:0907.1006 (2009). | Numdam | MR | Zbl
[26] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc. 168, 798 (2004). | MR | Zbl
[27] R. Osserman, On the inequality
[28] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure App. Math. 20 (1967), 721–747. | MR | Zbl
[29] L. Véron, “Singularities of Solutions of Second Order Quasilinear Equations”, Pitman Research Notes in Math. 353, Addison-Wesley-Longman, 1996. | MR | Zbl