Stability of the Calabi flow near an extremal metric
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 1, pp. 167-175.

We prove that on a Kähler manifold admitting an extremal metric ω and for any Kähler potential ϕ 0 close to ω, the Calabi flow starting at ϕ 0 exists for all time and the modified Calabi flow starting at ϕ 0 will always be close to ω. Furthermore, when the initial data is invariant under the maximal compact subgroup of the identity component of the reduced automorphism group, the modified Calabi flow converges to an extremal metric near ω exponentially fast.

Published online:
Classification: 53C44, 32Q15, 32Q26
Huang, Hongnian 1; Zheng, Kai 2

1 Centre interuniversitaire de recherches en géométrie et topologie Université du Québec à Montréal Case postale 8888, Succursale centre-ville Montréal (Québec), H3C 3P8, Canada
2 Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing, 100190, P.R. China
@article{ASNSP_2012_5_11_1_167_0,
     author = {Huang, Hongnian and Zheng, Kai},
     title = {Stability of the {Calabi} flow near an extremal metric},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {167--175},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {1},
     year = {2012},
     mrnumber = {2953047},
     zbl = {1246.53088},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2012_5_11_1_167_0/}
}
TY  - JOUR
AU  - Huang, Hongnian
AU  - Zheng, Kai
TI  - Stability of the Calabi flow near an extremal metric
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 167
EP  - 175
VL  - 11
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2012_5_11_1_167_0/
LA  - en
ID  - ASNSP_2012_5_11_1_167_0
ER  - 
%0 Journal Article
%A Huang, Hongnian
%A Zheng, Kai
%T Stability of the Calabi flow near an extremal metric
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 167-175
%V 11
%N 1
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2012_5_11_1_167_0/
%G en
%F ASNSP_2012_5_11_1_167_0
Huang, Hongnian; Zheng, Kai. Stability of the Calabi flow near an extremal metric. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 1, pp. 167-175. http://archive.numdam.org/item/ASNSP_2012_5_11_1_167_0/

[1] A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199–210. | EuDML | MR | Zbl

[2] E. Calabi, Extremal Kähler metrics, In: “Seminar on Differential Geometry”, Ann. of Math. Stud., Vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, 259–290. | MR | Zbl

[3] E. Calabi, Extremal Kähler metrics. II, In: “Differential Geometry and Complex Analysis”, Springer, Berlin, 1982, 95–114. | MR | Zbl

[4] E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), 173–193. | MR | Zbl

[5] X. X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189–234. | MR | Zbl

[6] X. X. Chen, Calabi flow in Riemann surfaces revisited: a new point of view, Internat. Math. Res. Notices 2001, 275–297. | MR | Zbl

[7] X. X. Chen, W. Y. Ding and K. Zheng, Pseudo-Calabi flow, Unpublished, 2009.

[8] X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), 539–570. | MR | Zbl

[9] X. X. Chen and W. Y. He, The Calabi flow on Kähler surface with bounded Sobolev constant, (I), arXiv:0710.5159, 2007. | MR | Zbl

[10] X. X. Chen and W. Y. He, The Calabi flow on toric Fano surface, arXiv:0807.3984, 2008. | MR | Zbl

[11] X. X. Chen, H. Z. Li and B. Wang, Kähler-Ricci flow with small initial energy, Geom. Funct. Anal. 18 (2009), 1525–1563. | MR | Zbl

[12] X. X. Chen and G. Tian, Ricci flow on Kähler manifolds, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 245–248. | MR | Zbl

[13] X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), 487–544. | MR | Zbl

[14] X. X. Chen and G. Tian, Uniqueness of extremal Kähler metrics, C. R. Math. Acad. Sci. Paris 340 (2005), 287–290. | MR | Zbl

[15] X. X. Chen and M. J. Zhu, Liouville energy on a topological two sphere, arXiv:0710.4320, 2007. | MR

[16] P. T. Chruściel, Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation, Comm. Math. Phys. 137 (1991), 289–313. | MR | Zbl

[17] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: “Northern California Symplectic Geometry Seminar”, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999, 3–33. | MR | Zbl

[18] S. K. Donaldson, Conjectures in Kähler geometry, In: “Strings and Geometry”, Amer. Math. Soc., Providence, RI, 2004, 71–78. | MR | Zbl

[19] W. Y. He, Local solution and extension to the Calabi flow, arXiv:0904.0978, 2009. | MR | Zbl

[20] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), 227–252. | MR | Zbl

[21] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495–550. | MR | Zbl

[22] M. Struwe, Curvature flows on surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) (2002), 247–274. | EuDML | Numdam | MR | Zbl

[23] V. Tosatti and B. Weinkove, The Calabi flow with small initial energy, Math. Res. Lett. 14 (2007), 1033–1039. | MR | Zbl

[24] K. Zheng, Stability of the Kähler Ricci flow in the space of Kähler metrics, Pacific J. Math. 251 (2011), 469–497. | MR | Zbl