Recent progress on ergodic theorems
Systèmes dynamiques II - Varsovie, Astérisque, no. 50 (1977), pp. 151-192.
@incollection{AST_1977__50__151_0,
     author = {Krengel, Ulrich},
     title = {Recent progress on ergodic theorems},
     booktitle = {Syst\`emes dynamiques II - Varsovie},
     series = {Ast\'erisque},
     pages = {151--192},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {50},
     year = {1977},
     mrnumber = {486418},
     zbl = {0376.28016},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1977__50__151_0/}
}
TY  - CHAP
AU  - Krengel, Ulrich
TI  - Recent progress on ergodic theorems
BT  - Systèmes dynamiques II - Varsovie
AU  - Collectif
T3  - Astérisque
PY  - 1977
SP  - 151
EP  - 192
IS  - 50
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1977__50__151_0/
LA  - en
ID  - AST_1977__50__151_0
ER  - 
%0 Book Section
%A Krengel, Ulrich
%T Recent progress on ergodic theorems
%B Systèmes dynamiques II - Varsovie
%A Collectif
%S Astérisque
%D 1977
%P 151-192
%N 50
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1977__50__151_0/
%G en
%F AST_1977__50__151_0
Krengel, Ulrich. Recent progress on ergodic theorems, in Systèmes dynamiques II - Varsovie, Astérisque, no. 50 (1977), pp. 151-192. http://archive.numdam.org/item/AST_1977__50__151_0/

1. Aaronson, J. : On the ergodic theory of non-integrable functions and infinite measure spaces. Preprint, 1976. | MR | Zbl

2. Akcoglu, M. A. : Divergence of ergodic ratios for positive Lp-contractions. Preprint.

3. Akcoglu, M. A. : Positive Contractions on L 1 -Spaces. Math. Z. 143, 1-13,1975. | DOI | MR | Zbl

4. Akcoglu, M. A. : A pointwise ergodic theorem for L p -spaces. Can. J. Math., 27, 1075-1082, 1975. | DOI | MR | Zbl

5. Akcoglu, M. A. and R. V. Chacon : A local ratio theorem. Can. J. Math. 22, 545-552, 1970. | DOI | MR | Zbl

6. Akcoglu, M. A., J. P. Huneke and H. Rost : A counter example to the Blum-Hanson theorem in general spaces. Pacific J. Math. 50, 305-308, 1974. | DOI | MR | Zbl

7. Akcoglu, M. A. and A. Del Junco : Convergence of averages of point-transformations. Proc. Amer. Math. Soc. 49, 265-266, 1975. | MR | Zbl

8. Akcoglu, M. A. and L. Sucheston : Weak convergence of positive contractions implies strong convergence of averages. ZW. 32, 139-145, 1975. | DOI | MR | Zbl

9. Akcoglu, M. A. and L. Sucheston : Remarks on Dilations in L p -Spaces. Proc. Amer.Math. Soc. 53, # 1, 80-81, 1975. | MR | Zbl

10. Akcoglu, M. A. and L.Sucheston : On Convergence of Itérâtes of Positive Contractions in L p -Spaces. J. Approximation Theory 13, 348-362, 1975. | DOI | MR | Zbl

11. Akcoglu, M. A. and L. Sucheston : Dilations of positive contractions on L p -spaces. Preprint to appear in Can. Math. Bull. | MR | Zbl

12. Akcoglu, M. A. and L. Sucheston : On positive dilations to isometries in L p -spaces. Preprint. | MR | Zbl

13. Akcoglu, M. A. and L. Sucheston : On weak and strong convergence of positive contractions in L p -spaces. Bull. Amer. Math.Soc. 81, 105-106, 1975. | DOI | MR | Zbl

14. Akcoglu, M. A. and L.Sucheston : On operator convergence in Hilbert space and in Lebesgue space. Periodica Math. Hungarica 2, 235-244, 1972. | DOI | MR | Zbl

15. Baxter, J. R. and R. V. Chacon : A local ergodic theorem on L p ; Can.J.Math. 26,1206-1216, 1974. | DOI | MR | Zbl

16. Bewley, T. : Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions. Ann. Inst. Henri Poincaré 7, # 4, 283-291, 1971. | EuDML | Numdam | MR | Zbl

17. Blum, J. R. and J. I. Reich : On the individual ergodic theorem for K-automorphisms. Ann.Prob. 5, # 4, 309-314, 1977. | DOI | MR | Zbl

18. Brunel, A. : Sur les sommes d'iteres d'un opérateur positif. In : Théorie Ergodique, Rennes 1973/74. Springer Lecture Notes in Math. 532, 19-34, 1976. | DOI | MR | Zbl

19. Brunel, A. : Chaînes abstraites de Markov vérifiant une condition de Orey. ZW 19, 323-329, 1971. | DOI | MR | Zbl

20. Brunel, A. : Théorème ergodique ponctuel pour un semigroupe commutatif finiment engendré de contractions de L 1 . Ann. Inst. Henri Poincaré 9, # 4, 327-343, 1973. | EuDML | Numdam | MR | Zbl

21. Brunel, A. : New conditions for existence of invariant measures in ergodic theory. Proc. Conf. Ergodic Theory, Ohio State Univ. 1970 ; Springer Lecture Notes in Math. 160, 7-17, 1970. | MR | Zbl

22. Brunel, A. and M. Keane : Ergodic theorems for operator sequences. ZW 12, 231-240, 1969. | DOI | MR | Zbl

23. Brunel, A. and D. Revuz : Un critère probabiliste de compacité des groupes. Ann. Prob. 2, No.4, 745-746, 1974. | DOI | MR | Zbl

24. Brunel, A. and D. Revuz : Quelques applications probabilistes de la quasi-compacité. AIHP 10, # 3, 301-337, 1974. | EuDML | Numdam | MR | Zbl

25. Burkholder, D. L. : Semi-Gaussian subspaces. Trans. Amer. Math. Soc. 104, 123-131, 1962. | DOI | MR | Zbl

26. Burkholder, D. L. : Succesive conditional expectations of an integrable function. Ann. Math. Stat. 33, 887-893, 1962. | DOI | MR | Zbl

27. Butzer, P. L. and U. Westhphal : The mean ergodic theorem and saturation. Indiana Univ. Math. J. 20, # 12, 1163-1174, 1971. | DOI | MR | Zbl

28. Chacon, R. V. : An ergodic theorem for operators satisfying norm conditions. J. Math. Mech. 11, 165-172, 1962. | MR | Zbl

29. Chacon, R. V.: A class of linear transformations. Proc. AMS 15, 560-564, 1964. | DOI | MR | Zbl

30. Chacon, R. V. and U. Krengel : Linear modulus of a linear operator. PAMS 15, 553-559. | MR | Zbl

31. Chatard, J. : Applications des proprietés de moyenne d'un groupe localement compact à la théorie ergodique. Thèse Univ. Paris VI, 1972.

32. Chatard, J. : Applications des propriétés de moyenne d'un groupe localement compact à la théorie ergodique. AIHP 6, # 4, 307-326, 1970. | EuDML | Numdam | MR | Zbl

Chatard, J. : Applications des propriétés de moyenne d'un groupe localement compact à la théorie ergodiqueErratum : AIHP 7, # 1, p. 81, 1971. | Zbl

33. Chatard, J. : Sur une généralization du théorème de Birkhoff. C.R.Acad. Sci. Paris t. 275, 20 Nov 1972, 1135-1138. | MR | Zbl

34. Chersi, F. and S. Invernizzi : Some complements to ergodic theorems for vector-valued functions. Bolletino U.M.I. (5) 13-A, 677-686, 1976. | MR | Zbl

35. Conze, J.-P. : Convergence des moyennes ergodiques pour des sous-suites. Bull. Soc. math.France 35, 7-15, 1973. | EuDML | Numdam | MR | Zbl

36. Conze, J.-P. and Dang Ngoc : Non cummutative ergodic theorems. Bull. Amer.Math. Soc., to appear 1977. | MR | Zbl

37. Cuculescu, I. and C. Foias : An individual ergodic theorem for positive operators. Rev. Roumaine Math. Pures Appl. 11, 581-594, 1966. | MR | Zbl

38. Derriennic, Y. : On the integrability of the supremum of ergodic ratios. Ann. Prob. 1, # 2, 338-340, 1973. | DOI | MR | Zbl

39. Derriennic, Y. : Sur le théorème ergodique sous-additif. C.R. Acad. Sc. Paris, t. 281, 3 déc. 1975, Sér. A., 985-988. | MR | Zbl

40. Derriennic, Y. : Lois "zero ou deux" pour les processus de Markov-applications aux marches aleatoires. AIHP 12, 111-130, 1976. | EuDML | Numdam | MR | Zbl

41. Derriennic, Y. and M. Lin : On invariant measures and ergodic theorems for positive operators. J. Functional Anal. 13, # 3, 252-267, 1973. | DOI | MR | Zbl

42. Dinges, H. : Ein Überblick über einige neuere Ansätze zu den Gesetzen der groben Zahlen. Proc. 4th Conf. Probab. Theory, Brasov, 1971. | Zbl

43. Emerson, W. R. : The pointwise ergodic theorem for amenable groups. Amer. J. Math. 472-487, 1974. | DOI | MR | Zbl

44. Engmann, H. : Notwendige und hinreichende Ungleichungen fur die Existenz spezieller L1-Kontraktionen. ZW 33, 317-329, 1976. | DOI | MR | Zbl

45. Falkowitz, M. : On finite invariant measures for Markov operators. PAMS 38, 553-557, 1973. | DOI | MR | Zbl

46. Foguel, S. R. : Ergodic theory of Markov processes. van Nostrand Math. Studies # 21, van Nostrand, New York, 1969. | MR | Zbl

47. Foguel, S. R. : On the "zero-two" law. Israel J. Math. 10, 275-280, 1971. | DOI | MR | Zbl

48. Foguel, S. R. : More on the "zero-two" law, preprint. | MR | Zbl

49. Foguel, S. R. : Convergence of the iterates of an operator. Israël J.Math. 16, 159-161, 1973. | DOI | MR | Zbl

50. Foguel, S. R. and M. Lin : Some ratio limit theorems for Markov operators. ZW 23, 55-66, 1972. | DOI | MR | Zbl

51. Foguel, S. R. and B. Weiss : On convex power series of a conservative Markov operator. PAMS 38, 325-330, 1973. | DOI | MR | Zbl

52. Fong, H. : On invariant functions for positive operators. Colloq. Math. 22, 75-84, 1970. | DOI | EuDML | MR | Zbl

53. Fong, H. : Weak convergence of semigroups implies strong convergence of weighted averages. PAMS 56, 157-161, 1976. | DOI | MR | Zbl

54. Fong, H. and M. Lin : On the convergence of ergodic ratios for positive operators, preprint. | MR | Zbl

55. Fong, H. and L. Sucheston : On unaveraged convergence of positive operators in Lebesgue space. TAMS 178, 1-15, 1973. | MR | Zbl

56. Fong, H. and L. Sucheston : On a mixing property of operators in L p -spaces. ZW 28, 165-171, 1974. | DOI | MR | Zbl

57. Fong, H. and L. Sucheston : On the ratio ergodic theorem for semigroups. Pacif. J. Math. 39, # 3, 659-667, 1971. | DOI | MR | Zbl

58. Furstenberg, H. : Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. I, II, III. | Zbl

59. Gologan, R.-N. : A remark on Chacun's ergodic theorem. Rev. Roum. Math. Pures et Appl. 21, # 5, 521-522, 1976. | MR | Zbl

60. Graham, V. : Weakly wandering vectors for compactly generated groups of unitary operators. J. Math. Anal. Appl. 46, 565-594, 1974. | DOI | MR | Zbl

61. Granirer, E.: On finite équivalent invariant measures for semigroups of transformations. Duke Math. J. 38, # 2,395-408, 1971. | MR | Zbl

62. Mcgrath, S. A. : A local ergodic theorem in Lebesgue space.

63. Mcgrath, S. A. : A pointwise Abelian ergodic theorem for L p -semigroups, 1p < . Journ. of Functional Anal. 23, 195-198, 1976. | DOI | MR | Zbl

64. Mcgrath, S. A. : On almost everywhere convergence of Abel means of contraction semigroups. Pacific J. Math. 65, 2, 405-408, 1976. | DOI | MR | Zbl

65. Mcgrath, S. A. : On the local ergodic theorems of Krengel, Kubokawa, and Terrell. Commentationes Math. Univ. Carolinae, 17, 1, 49-59, 1976. | EuDML | MR | Zbl

66. Greenleaf, F. P. : Ergodic theorems and the construction of summing séquences in amenable locally compact groups. Comm. Pure and Appl. Math. 26, 29-46, 1973. | DOI | MR | Zbl

67. Grillenberger, Chr. and U. Krengel : On matrix summation and the pointwise ergodic theorem. In : Théorie Ergodique Rennes 1973/74 ; Springer Lecture Notes in Math. 532, 113-124, 1976. | DOI | MR | Zbl

68. Hammersley, J. M. : Postulâtes for subadditive processes. Ann. Probab. 2, # 4, 652-680, 1974. | DOI | MR | Zbl

69. Hasegawa, S•, R. Sato and S. Tsurumi : Vector valued ergodic theorems for a 1-parameter semigroup of linear operators. Preprint. | DOI | MR | Zbl

70. Horowitz, S. : Transition probabilities and contractions of L . ZW 24, 263-274, 1972. | DOI | MR | Zbl

71. Horowitz, S. : Semigroups of Markov operators. AIHP, B (N.S.) 10, 155-166, 1974. | EuDML | Numdam | MR | Zbl

72. Ionescu-Tulcea, A. : Ergodic properties of isometries in L p -spaces, 1 < p < . Bull. Amer. Math. Soc. 70, No. 3, 366-371, 1964. | DOI | MR | Zbl

73. Ionescu-Tulcea, A. : An L P -inequality with application to ergodic theory. Houston J. Math. 1, # 1, 153-159, 1975. | Zbl

74. Ionescu-Tulcea, A. and M. Moretz : Ergodic properties of semi-Markovian operators on the Z -part. ZW 13, 119-122, 1969. | DOI | MR | Zbl

75. Isaac, R. : Theorems for conditional expectations with applications to Markov processes. Israel J. Math16, 362-374, 1973. | DOI | MR | Zbl

76. Ishitani, H. : A central limit theorem for the subadditive process and its applications to products of random matrices. To appear in : Publ. RIMS, Kyoto Univ. | MR | Zbl

77. Istratescu, V. I. : On a class of operators and ergodic theory I. Rev. Roum. Math. Pures et Appl. 19, No.4, 411-420, 1974. | MR | Zbl

78. Istratescu, V. I. : On a class of operators and ergodic theory II, preprint. | MR | Zbl

79. Istratescu, V. I. : Some remarks on a class of semi-groups of operators I. ZW 26, 241-243, 1973. | MR | Zbl

80. Jacobs, K. : Neuere Methoden und Ergebnisse der Ergoden-theorie. Ergebn.d.Math. N.F. Heft 29, Springer, Berlin-Göttingen-Heidelberg, 1960. | MR | Zbl

81. Jacobs, K. : Lecture Notes on Ergodic Theory, Aarhus Univ., Matematisk Inst., 1962-63. | MR | Zbl

82. Jones, L. K. : A mean ergodic theorem for weakly mixing operators. Adv. in Math. 7, 211-216, 1971. | DOI | MR | Zbl

83. Jones, L. K. : An elementary lemma on séquences of integers and its applications to functional analysis. Math. Z. 126, 299-307, 1972. | DOI | EuDML | MR | Zbl

84. Jones, L. K. : A Generalization of the Mean Ergodic Theorem in Banach Spaces. ZW 27, 105-107, 1973. | DOI | MR | Zbl

85. Jones, L. K. and V. Kuftinec : A note on the Blum-Hanson theorem. PAMS 30, #1, 202-203, 1971. | MR | Zbl

86. Jones, L. K. and M. Lin : Ergodic theorems of weak mixing type. PAMS 57, #1, 50-52, 1976. | DOI | MR | Zbl

87. Jones, L. K. and M. Lin : Unimodular eigenvalues and weak mixing, preprint. | MR | Zbl

88. Del Junco, A. : On the decomposition of a subadditive process. Ann. Prob. 5, #2, 298-302, 1977. | DOI | MR | Zbl

89. Kern, M., R. Nagel and G. Palm : Dilations of positive operators : Construction and Ergodic Theory. Preprint. | MR

90. Kin, E. : The General Random Ergodic Theorem I, II. ZW 22, 120-135 u. 136-144, 1972. | DOI | MR | Zbl

91. Kingman, J. F. C. : Subadditive ergodic theory. Ann. Prob. 1, 883-909, 1973. | DOI | MR | Zbl

92. Kingman, J. F. C. : The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. B 30, 499-510, 1968. | MR | Zbl

93. Kipnis, C : Majoration des semi-groupes de contractions de L 1 et applications. AIHP 10, #4, 369-384, 1974. | EuDML | Numdam | MR | Zbl

94. Kopp, P. E. : Abelian ergodic theorems for vector valued functions. Glasgow Math. Journ., 16, 57-60, 1975. | DOI | MR | Zbl

95. Krengel, U. : On the global limit behaviour of Markov chains and of general nonsingular Markov processes. ZW 6, 4, 302-316, 1966. | DOI | MR | Zbl

96. Krengel, U. : A necessary and sufficient condition for the validity of the local ergodic theorem. Springer Lecture Notes in Math. 89, 170-177, 1969. | MR | Zbl

97. Krengel, U. : A local ergodic theorem. Invent. math. 6, 329-333, 1969. | DOI | EuDML | MR | Zbl

98. Krengel, U. : On the individual ergodic theorem for subsequences. Ann. Math. Stat. 42, 1091-1095, 1971. | DOI | MR | Zbl

99. Krengel, U. : Weakly wandering vectors and weakly independent partitions. TAMS 164, 199-226, 1972. | DOI | MR | Zbl

100. Krengel, U. : Un théorème ergodique pour les processus sur-stationnaires. C.R. Acad.Sci. Paris, t. 282 (3 mai 1976), Sér.A. 1019-1021. | MR | Zbl

101. Kubokawa, Y. : A local ergodic theorem for semigroups in L p . Tôhoku Math. J. 26, #3, 411-422, 1974. | DOI | MR | Zbl

102. Kubokawa, Y. : A pointwise ergodic theorem for positive bounded operators. Proc. Jap. Acad. 48, # 7, 458-460, 1972. | DOI | MR | Zbl

103. Kubokawa, Y. : A general local ergodic theorem. Proc. Jap. Acad. 48, #7, 461-465, 1972. | DOI | MR | Zbl

104. Kubokawa, Y. : Ergodic theorems for contraction semigroups. J. Math. Soc. Japan, 27, 2, 184-193, 1975. | DOI | MR | Zbl

105. Lin, M. : Mixing for Markov operators. ZW 19, 231-242, 1971. | DOI | MR | Zbl

106. Lin, M. : Semi-groups of Markov operators. Bolletino U.M.I. 6, 20-44, 1972. | MR | Zbl

107.Lin, M. : Strong ratio limit theorems for Markov processes. Ann. Math. Stat. 43, #2, 569-579, 1972. | DOI | MR | Zbl

108. Lin, M. : On the uniform ergodic theorem. PAMS 43, #2, 337-340, 1974. | DOI | MR | Zbl

109. Lin, M. : On the uniform ergodic theorem II. PAMS 46, #1, 1-9, 1974. | MR | Zbl

110. Lin, M. : Convergence of the iterates of a Markov operator. ZW, 29, 153-163, 1974. | DOI | MR | Zbl

111. Lin, M. : Quasi-compactness and uniform ergodicity of Markov operators. AIHP, B (N.S.) 11, # 4, 345-354, 1975/76. | EuDML | Numdam | MR | Zbl

112. Lin, M. : On quasi-compact Markov operators. Ann.Prob. 2, 464-475, 1974. | DOI | MR | Zbl

113. Lin, M. : Unaveraged convergence of the iterates of a Markov operator. Preprint. | MR | Zbl

114. Lin, M. : Operator representations of compact groups and ergodic theorems of weak-mixing type. Preprint.

115. Lloyd, S. P. : On the mean ergodic theorem of Sine. PAMS 56, 121-126, 1976. | DOI | MR | Zbl

116. Métivier, M. : Théorèmes limite quotient pour chaînes de Markov récurrentes au sens de Harris. AIHP, B, 8, 93-105, 1972. | EuDML | Numdam | MR | Zbl

117. Nagel, R. : Ergodic and Mixing Properties of Linear Operators. Proc. Royal Irish Acad. 74, 245-261, 1974. | MR | Zbl

118. Neveu, J. : Existence of bounded invariant measures in ergodic theory. Symp. 5th Berkeley Symp. Math.Stat. Prob. II (2) 461-472, 1967. | MR | Zbl

119. Neveu, J. : Potentiels Markoviens récurrents des chaînes de Harris. Ann.Inst.Fourier 22, #2, 85-130, 1972. | DOI | EuDML | Numdam | MR | Zbl

120. Nuber, J. A. : A constructive ergodic theorem. TAMS 164, 115-137, 1972. | DOI | MR | Zbl

Nuber, J. A. : A constructive ergodic theorem. Erratum TAMS 216, 393, 1976. | Zbl

121. Ornstein, D. S. : The sums of iterates of a positive operator. Advances in Prob. 2, 85-115, 1970. | MR | Zbl

122. Ornstein, D. S. : A remark on the Birkhoff ergodic theorem. Illin. J. Math. 15, 77-79, 1971. | MR | Zbl

123. Ornstein, D. S. and L.Sucheston : An operator theorem on L 1 -convergence to zero with applications to Markov kernels. Ann. Math. Stat. 41, 1631-1639, 1970. | DOI | MR | Zbl

124. Papangelou, F. : A martingale approach to the convergence of the iterates of a transition function. Preprint. | DOI | MR | Zbl

125. Reich, J. I. : On the individual ergodic theorem for subsequences. Preprint. | MR | Zbl

126. Renaud, P. G. : General ergodic theorems for locally compact groups. Amer. Journ. Math. 63, #1, 1971. | MR | Zbl

127. Revuz, D. : Markov Chains. North Holland Math.Library Vol. 11, North Holland/American Elsevier. Amsterdam, Oxford, New York 1975. | MR | Zbl

128. Rost, H. : Markoff-Ketten bei sich fiillenden Löchern im Zustandsraum. Ann. Inst. Fourier, Grenoble 21 (1), 253-270, 1971. | DOI | EuDML | MR | Zbl

129. Rost, H. : Charakterisierung einer Ordnung von konischen Maßen durch positive L 1 -Kontraktionen. Math.Anal. Appl. 33, 35-42, 1971. | DOI | MR | Zbl

130. Ryll-Nardzewski, C. : Topics in ergodic theory. Prob.Winter School (Proc. IVth Winter School Karpacz 1975), Springer Lecture Notes in Math. 472, 131-156. | DOI | MR | Zbl

131. Sachdeva, U. : On finite invariant measures for semi-groups of operators. Canad. Math. Bull., 14, (2), 1971. | MR | Zbl

132. Sato, R. : Ergodic theorems for semigroups in L p (1<p<). Tôhoku Math.J. 26 (2), 73-76, 1974. | MR | Zbl

133. Sato, R. : On a local ergodic theorem. Studia Math. 58, 1-5, 1976. | DOI | EuDML | MR | Zbl

134. Sato, R. : A note on a local ergodic theorem. Comment. Math. Univ.Carolinae, 16, #1, 1-11, 1975. | EuDML | MR | Zbl

135. Sato, R.: Finite invariant measures in ergodic theory. Preprint 1973.

136. Sato, R. : A mean ergodic theorem for a contraction semigroup in Lebesgue space. Studia Math. 54, # 3, 213-219, 1975/76. | DOI | EuDML | MR | Zbl

137.Sawashima, I. and F. Niiro : Reduction of a Sub-Markov operator to its irreducible components. Nat.Sci.Rep. of Ochakomizu Univ. 24, 35-59, 1973. | MR | Zbl

138. Sine, R.C : A mean ergodic theorem. PAMS 24/438-439, 1970. | DOI | MR | Zbl

139. Strassen, V. : On the existence of probability measures with given marginals. Ann.Math.Statist. 36, 423-439, 1965. | DOI | MR | Zbl

140. Sucheston, L. : Problems. Probability in Banach Spaces, Oberwolfach 1975, Springer Lecture Notes in Math. 526, 285-290, 1976. | Zbl

141. Sund, T. : Weakly wandering vectors for representations of groups with precompact conjugacy classes. Preprint.

142. Tempelman, A. A. : Ergodic theory for general dynamic Systems. Soviet Math.Doklady 8, # 5, 1213-1216, 1967. | Zbl

143. Terrell, Th. R. : Local ergodic theorems for N-parameter semigroups of operators. Lecture Notes in Math. 160, Springer, Berlin-Heidelberg-New York, 1970. | Zbl

144. Terrell, Th. R. : The local ergodic theorem and semigroups of non-positive operators. J. Funct. Anal. 10, 424-429, 1972. | DOI | MR | Zbl

145. De La Torre, A. : A simple proof of the maximal ergodic theorem. Canad. J. Math. 28, # 5, 1073-1075, 1976. | DOI | MR | Zbl

146. Tsurumi, Sh. : An ergodic theorem for a semigroup of linear contractions. Proc. Jap. Acad. 49, # 5, 306-309, 1973. | DOI | MR | Zbl

147. Tsurumi, Sh. : On random ergodic theorems for a random quasi-semigroup of linear contractions. Proc.Japan Acad. 48, # 3, 149-152, 1972. | DOI | MR | Zbl

148. Tsurumi, Sh. : Ergodic theorems for vector valued functions. Preprint.

149. Smythe, R. I. : Multiparameter subadditive processes. Ann.Prob. 4, 772-782, 1976 | DOI | MR | Zbl

150. Lance, E. C. : Ergodic theorems for convex sets and operator algebras. Invent. math. 37, 201-214, 1976. | DOI | EuDML | MR | Zbl

151. Tempelman, A. A. : Ergodic theorems for general dynamical Systems. Trudy Moskov. Mat Obsc. 26, 1972. | MR | Zbl

Tempelman, A. A. : Ergodic theorems for general dynamical Systems. Translation in : Trans. Moscow Math. Soc. 26, 94-132, 1972. | Zbl

152. Nguyen, X. X. and H. Zessin : Ergodic theorems for spatial processes. Preprint, Bielefeld, 1977. | MR | Zbl

153. Nguyen, X. X. : Ergodic theorems for subadditive spatial processes. Preprint, Bielefeld, 1977. | MR

154. Jones, R. L. : Inequalities for the ergodic maximal function. Studia Math. T. LX., 111-129, 1977. | DOI | EuDML | MR | Zbl

155. Jones, R. L. : The ergodic maximal function with cancellation. Ann.Prob. 4, 91-97, 1976. | DOI | MR | Zbl

156. Petersen, K. : The converse of the dominated ergodic theorem. Preprint. | DOI | MR | Zbl