Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 321-333.
@incollection{AST_1994__226__321_0,
     author = {Michler, Ruth I.},
     title = {Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces},
     booktitle = {$K$-theory - Strasbourg, 1992},
     series = {Ast\'erisque},
     pages = {321--333},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     zbl = {0832.14005},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1994__226__321_0/}
}
TY  - CHAP
AU  - Michler, Ruth I.
TI  - Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
SP  - 321
EP  - 333
IS  - 226
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1994__226__321_0/
LA  - en
ID  - AST_1994__226__321_0
ER  - 
%0 Book Section
%A Michler, Ruth I.
%T Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%P 321-333
%N 226
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1994__226__321_0/
%G en
%F AST_1994__226__321_0
Michler, Ruth I. Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, in $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 321-333. http://archive.numdam.org/item/AST_1994__226__321_0/

[1] J. A. Guccione, J. J. Guccione, M. J. Redondo, O. E. Villamayor, Hochschild and Cyclic homology of hypersurfaces, Adv. in Math. 95 (1992), 18-60. | DOI | Zbl

[2] E. Brieskorn, H. Knoerrer, Plane Algebraic Curves, Birkhaeuser (1986). | DOI | Zbl

[3] S. Geller, L. Reid, C. Weibel, The Cyclic Homology and K-theory of Curves, J. reine angew. Math. 393 (1989), 39-90. | EuDML | Zbl

[4] S. Geller, C. Weibel, Hodge-decompositions of Loday symbols in K-theory and Cyclic homology, K-theory to appear. | Zbl

[5] M. Gerstenhaber, S. D Schack, A Hodge-type decomposition for commutative Algebras, J. Pure and Applied Algebra 48 (1987), 229-247. | DOI | Zbl

[6] T. Goodwillie, Cyclic homology, Derivations and the free Loopspace, Topology 24.2 (1985), 187-215. | DOI | Zbl

[7] G. M. Greuel, Deformation und Klassification von Singularitäten und Moduln, Jber. d. Dt. Math.-Verein. 90 (1992), 177-238. | Zbl

[8] L. Illusie, Complexe cotangent et Déformations, Springer Lecture Notes 239 (1972). | Zbl

[9] L. Illusie, Complexe cotangent et Déformations, Springer Lecture Notes 283 (1972). | Zbl

[10] A. Lago, A. Rodicio, Generalized Koszul Complexes and Hochschild (co)homology of complete intersections, Invent. math. 107 (1992), 433-446. | DOI | EuDML | Zbl

[11] J. L. Loday, Opérations sur l'homologie Cyclique des algèbres commutatives, Invent. math. 96 (1989), 205-230. | DOI | EuDML | Zbl

[12] J. Majadas, A. Rodicio, The Hochschild (co)-homology of hypersurfaces, Communications in Algebra, 20.2 (1992), 349-386. | DOI | Zbl

[13] L. G. Roberts, Kähler differentials and HC 1 of certain graded K-algebras, NATO ASI ser. C 279 (1989), 389-424. | Zbl

[14] U. Vetter, Äussere Potenzen von Differentialmoduln Reduzierter Vollständiger Durchschnitte, Manuscripta Math. 2 (1970), 67-75. | DOI | EuDML | Zbl

[15] M. Vigué-Poirrier, Cyclic Homology of Algebraic Hypersurfaces, J. Pure and Appl. Alg. 72 (1991), 95-108. | DOI | Zbl