Comparison theorem for λ-operations in higher algebraic K-theory
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 335-369.
@incollection{AST_1994__226__335_0,
     author = {Nenashev, A.},
     title = {Comparison theorem for $\lambda$-operations in higher algebraic $K$-theory},
     booktitle = {$K$-theory - Strasbourg, 1992},
     series = {Ast\'erisque},
     pages = {335--369},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     zbl = {0816.18004},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1994__226__335_0/}
}
TY  - CHAP
AU  - Nenashev, A.
TI  - Comparison theorem for $\lambda$-operations in higher algebraic $K$-theory
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
SP  - 335
EP  - 369
IS  - 226
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1994__226__335_0/
LA  - en
ID  - AST_1994__226__335_0
ER  - 
%0 Book Section
%A Nenashev, A.
%T Comparison theorem for $\lambda$-operations in higher algebraic $K$-theory
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%P 335-369
%N 226
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1994__226__335_0/
%G en
%F AST_1994__226__335_0
Nenashev, A. Comparison theorem for $\lambda$-operations in higher algebraic $K$-theory, in $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 335-369. http://archive.numdam.org/item/AST_1994__226__335_0/

[ABW] K. Akin, D. Buchsbaum, and J. Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), n° 3, 207-278. | DOI | Zbl

[GG] H. Gillet and D. Grayson, On the loop space of the Q-construction, Illinois J. Math. 31 (1987), n° 4, 574-597. | Zbl

[G1] D. Grayson, Exact sequences in algebraic K-theory, Illinois J. Math. 31 (1987), n° 4, 598-617. | Zbl

[G2] D. Grayson, Exterior power operations on higher K-theory, K-Theory 3 (1989), n° 3, 247-260. | DOI | Zbl

[G3] D. Grayson, Adams operations on higher K-theory, preprint, Univ. of Illinois at Urbana-Champaign (1991), 10 p. | Zbl

[Hi] H. Hiller, λ-rings and algebraic K-theory, J. Pure Appl. Algebra 20 (1981), 241-266. | DOI | Zbl

[Kr] Ch. Kratzer, λ-Structure en K-théorie algébrique, Comment. Math. Helv. 55 (1980), n° 2, 233-254. | DOI | EuDML | Zbl

[N] A. Nenashev, Simplicial definition of λ-operations in higher K-theory, Adv. in Soviet Math. 4 (1991), 9-20. | Zbl

[W1] F. Waldhausen, Algebraic K-theory of generalized free products, Annals of Math. 108 (1978), 135-256. | DOI | Zbl

[W2] F. Waldhausen, Algebraic K-theory of spaces, Lecture Notes in Math. 1126, Springer (1983), 318-419. | Zbl

[Kö] B. Köck, Shuffle products in higher K-theory, to appear in J. Pure Appl. Algebra 92 (1994). | DOI | Zbl