Un théorème de type Haefliger définissable
Équations différentielles et singularités. En l'honneur de J. M. Aroca, Astérisque, no. 323 (2009), pp. 197-221.
@incollection{AST_2009__323__197_0,
     author = {Lion, Jean-Marie and Speissegger, Patrick},
     title = {Un th\'eor\`eme de type {Haefliger} d\'efinissable},
     booktitle = {\'Equations diff\'erentielles et singularit\'es. En l'honneur de J. M. Aroca},
     editor = {Cano F. and Loray F. and Moralez-Ruiz J. J. and Sad P. and Spivakovsky M.},
     series = {Ast\'erisque},
     pages = {197--221},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {323},
     year = {2009},
     zbl = {1221.03028},
     language = {fr},
     url = {http://archive.numdam.org/item/AST_2009__323__197_0/}
}
TY  - CHAP
AU  - Lion, Jean-Marie
AU  - Speissegger, Patrick
TI  - Un théorème de type Haefliger définissable
BT  - Équations différentielles et singularités. En l'honneur de J. M. Aroca
AU  - Collectif
ED  - Cano F.
ED  - Loray F.
ED  - Moralez-Ruiz J. J.
ED  - Sad P.
ED  - Spivakovsky M.
T3  - Astérisque
PY  - 2009
SP  - 197
EP  - 221
IS  - 323
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2009__323__197_0/
LA  - fr
ID  - AST_2009__323__197_0
ER  - 
%0 Book Section
%A Lion, Jean-Marie
%A Speissegger, Patrick
%T Un théorème de type Haefliger définissable
%B Équations différentielles et singularités. En l'honneur de J. M. Aroca
%A Collectif
%E Cano F.
%E Loray F.
%E Moralez-Ruiz J. J.
%E Sad P.
%E Spivakovsky M.
%S Astérisque
%D 2009
%P 197-221
%N 323
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2009__323__197_0/
%G fr
%F AST_2009__323__197_0
Lion, Jean-Marie; Speissegger, Patrick. Un théorème de type Haefliger définissable, dans Équations différentielles et singularités. En l'honneur de J. M. Aroca, Astérisque, no. 323 (2009), pp. 197-221. http://archive.numdam.org/item/AST_2009__323__197_0/

[1] J. M. Aroca, H. Hironaka & J. L. Vicente - Introduction to the theory of infinitely near singular points. The theory of the maximal contact. Desingularization theorems, Memorias de Matemática del Instituto « Jorge Juan », vol. 28, 29, 30, Consejo Superior de Investigaciones Científicas, 1977. | Zbl

[2] R. Benedetti & J.-J. Risler - Real algebraic and semi-algebraic sets, Actualités Mathématiques, Hermann, 1990. | Zbl

[3] J. Bochnak, M. Coste & F. Roy - Géométrie algébrique réelle, Springer, 1986. | Zbl

[4] C. Camacho & A. Lins Neto - Teoria geométrica das folheaç oes, Projeto Euclides, vol. 9, Instituto de Matemática Pura e Aplicada, 1979. | Zbl

[5] F. Cano - Reduction of the singularities of codimension one singular foliations in dimension three, Ann. of Math. (2) 160 (2004), p. 907-1011. | DOI | Zbl

[6] F. Chazal - Structure locale et globale des feuilletages de Rolle, un théorème de fibration, Ann. Inst. Fourier (Grenoble) 48 (1998), p. 553-592. | DOI | EuDML | Numdam | Zbl

[7] B. Doubrovine, S. Novikov & A. Fomenko - Géométrie contemporaine, Éditions Mir, 1982.

[8] L. Van Der Dries - Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, 1998. | Zbl

[9] L. Van Der Dries, A. Macintyre & D. Marker - The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), p. 183-205. | DOI | Zbl

[10] L. Van Der Dries & C. Miller - Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), p. 497-540. | DOI | Zbl

[11] C. Ehresmann & G. Reeb - Sur les champs d'éléments de contact de dimension p complètement intégrables dans une variété continuement différentiable V n , C. R. Acad. Sci. Paris 218 (1944), p. 955-957. | Zbl

[12] A. M. Gabrièlov - Projections of semianalytic sets, Funkcional. Anal. i Priložen. 2 (1968), p. 18-30. | Zbl

[13] C. Godbillon - Géométrie différentielle et mécanique analytique, Hermann, 1969. | Zbl

[14] C. Godbillon, Feuilletages, Progress in Mathematics, vol. 98, Birkhäuser, 1991, Études géométriques. | Zbl

[15] A. Haefliger - Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), p. 248-329. | DOI | EuDML | Zbl

[16] A. Haefliger, Naissance des feuilletages, d'Ehresmann-Reeb à Novikov, in Géométrie au XXe siècle, histoire et horizons, Hermann, 2005.

[17] A. G. Khovanskiĭ - Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funktsional. Anal. i Prilozhen. 18 (1984), p. 40-50. | DOI | Zbl

[18] N. H. Kuiper - C 1 -equivalence of functions near isolated critical points, in Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), Princeton Univ. Press, 1972, p. 199-218. Ann. of Math. Studies, No. 69. | Zbl

[19] K. Kurdyka & G. Raby - Densité des ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 39 (1989), p. 753-771. | DOI | EuDML | Numdam | Zbl

[20] J.-M. Lion - Partitions normales de Lojasiewicz et hypersurfaces pfaffiennes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), p. 453-456. | Zbl

[21] S. Łojasiewicz - Ensembles semi-analytiques, prépublication IHES, 1965.

[22] S. López De Medrano - A splitting lemma for C r functions, r2, in Singularity theory (Trieste, 1991), World Sci. Publ., River Edge, NJ, 1995, p. 444-450. | Zbl

[23] R. Moussu & C. Roche - Théorèmes definitude pour les variétés pfaffiennes, Ann. Inst. Fourier (Grenoble) 42 (1992), p. 393-420. | DOI | EuDML | Numdam | Zbl

[24] J. R. Munkres - Elements of algebraic topology, Addison-Wesley Publishing Company, 1984. | Zbl

[25] D. Panazzolo - Resolution of singularities of real-analytic vector fields in dimension three, Acta Math. 197 (2006), p. 167-289. | DOI | Zbl

[26] C. Roche - Sur les variétés pfaffiennes de Rolle, habilitation, Université de Bourgogne, 1993.

[27] C. Roche, Densities for certain leaves of real analytic foliations, Astérisque 222 (1994), p. 7, 373-387, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992). | Numdam | Zbl

[28] J.-P. Rolin, F. Sanz & R. Schäfker - Quasianalytic solutions of differential equations and o-minimal structures, prépublication, 2005. | Zbl

[29] J.-P. Rolin, P. Speissegger & A. J. Wilkie - Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), p. 751-777. | DOI | Zbl

[30] P. Speissegger - The Pfaffian closure of an o-minimal structure, J. reine angew. Math. 508 (1999), p. 189-211. | DOI | Zbl

[31] B. Teissier - Tame and stratified objects, in Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, 1997, p. 231-242. | DOI | Zbl

[32] R. Thom - Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble 6 (1955-1956), p. 43-87. | DOI | EuDML | Numdam | Zbl

[33] G. Valette - Lipschitz triangulations, Illinois J. Math. 49 (2005), p. 953-979. | Zbl

[34] H. Whitney - Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), p. 496-549. | DOI | Zbl

[35] A. J. Wilkie - A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.) 5 (1999), p. 397-421 | DOI | Zbl