@book{AST_2010__329__R1_0, author = {L\'evy, Thierry}, title = {Two-dimensional {Markovian} holonomy fields}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {329}, year = {2010}, zbl = {1200.60003}, mrnumber = {2667871}, language = {en}, url = {http://archive.numdam.org/item/AST_2010__329__R1_0/} }
TY - BOOK AU - Lévy, Thierry TI - Two-dimensional Markovian holonomy fields T3 - Astérisque PY - 2010 DA - 2010/// IS - 329 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2010__329__R1_0/ UR - https://zbmath.org/?q=an%3A1200.60003 UR - https://www.ams.org/mathscinet-getitem?mr=2667871 LA - en ID - AST_2010__329__R1_0 ER -
Lévy, Thierry. Two-dimensional Markovian holonomy fields. Astérisque, no. 329 (2010), 178 p. http://numdam.org/item/AST_2010__329__R1_0/
[1] Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces, in Stochastic processes-mathematics and physics (Bielefeld, 1984), Lecture Notes in Math., vol. 1158, Springer, 1986, pp. 1-24. | Article | MR 838556 | Zbl 0575.60068
, & -[2] Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields, J. Funct. Anal., t. 78 (1988), pp. 154-184. | Article | MR 937637 | Zbl 0639.60010
, & ,[3] Lévy flows on manifolds and Lévy processes on Lie groups, J. Math. Kyoto Univ., t. 33 (1993), pp. 1103-1123. | Article | MR 1251218 | Zbl 0804.58057
& -[4] Topological quantum field theories., Publ. Math., Inst. Hautes Etud. Sci., t. 68 (1988), pp. 175-186. | Article | EuDML 104037 | Numdam | MR 1001453 | Zbl 0692.53053
-[5] Gauge fields, knots and gravity, Series on Knots and Everything, vol. 4, World Scientific Publishing Co. Inc., 1994. | MR 1313910 | Zbl 0843.57001
& -[6] A generalization of the isoperimetric inequality, J. Differential Geometry, t. 6 (1971/72), pp. 175-192. | Article | MR 305319 | Zbl 0227.53040
& -[7] Gauge theory and variational principles, Global Analysis Pure and Applied> Series A, vol. 1, Addison-Wesley Publishing Co., Reading, Mass., 1981. | MR 643361 | Zbl 0481.58002
-[8] Two-dimensional gauge theories of the symmetric group in the large- limit, Comm. Math. Phys., t. 245 (2004), pp. 1-25. | Article | MR 2036366 | Zbl 1069.81033
& -[9] Singular sets of minimizers for the Mumford-Shah functional, Progress in Math., vol. 233, Birkhäuser, 2005. | MR 2129693 | Zbl 1086.49030
-[10] : continuum expectations, lattice convergence, and lassos, Comm. Math. Phys., t. 123 (1989), pp. 575-616. | Article | MR 1006295 | Zbl 0819.58043
-[11] Two-dimensional Euclidean quantized Yang-Mills fields, in Probability models in mathematical physics (Colorado Springs, CO, 1990), World Sci. Publ., Teaneck, NJ, 1991, pp. 21-36. | MR 1120553
,[12] The coding of compact real trees by real valued functions., Preprint (2006).
-[13] Quantum Yang-Mills on the two-sphere, Comm. Math. Phys., t. 134 (1990), pp. 273-292. | Article | MR 1081007 | Zbl 0715.58046
-[14] Quantum Yang-Mills on a Riemann surface, Comm. Math. Phys., t. 140 (1991), pp. 321-338. | Article | MR 1124272 | Zbl 0734.53069
,[15] Loops, knots, gauge theories and quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1996. | MR 1439964 | Zbl 0865.53064
& -[16] Some properties of large- two-dimensional Yang-Mills theory, Nuclear Phys. B, t. 437 (1995), pp. 541-584. | Article | MR 1321333 | Zbl 1052.81560
& -[17] Two-dimensional is a string theory, Nuclear Phys. B, t. 400 (1993), pp. 181-208. | Article | MR 1227260 | Zbl 0941.81586
& -[18] A Poincaré lemma for connection forms, J. Funct. Anal., t. 63 (1985), pp. 1-46. | Article | MR 795515 | Zbl 0624.53021
-[19] The Maxwell equations for Yang-Mills theory, in Mathematical quantum field theory and related topics (Montreal, PQ, 1987), CMS Conf. Proc, vol. 9, Amer. Math. Soc, 1988, pp. 193-203. | MR 973470 | Zbl 0651.53023
,[20] Two-dimensional Yang-Mills theory via stochastic differential equations, Ann. Physics, t. 194 (1989), pp. 65-112. | Article | MR 1015789 | Zbl 0698.60047
, & -[21] Uniqueness for the signature of a path of bounded variation and the reduced path group, Preprint (2006). | MR 2630037 | Zbl 1276.58012
& -[22] Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons Inc., 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. | MR 1393940
& -[23] Graphs on surfaces and their applications, Encyclopaedia of Math. Sciences, vol. 141, Springer, 2004. | Article | MR 2036721 | Zbl 1040.05001
& -[24] Yang-Mills measure on compact surfaces, Mem. Amer. Math. Soc., t. 166 (2003). | MR 2006374 | Zbl 1036.58009
-[25] Discrete and continuous Yang-Mills measure for non-trivial bundles over compact surfaces, Probab. Theory Related Fields, t. 136 (2006), pp. 171-202. | Article | MR 2240786 | Zbl 1103.81033
,[26] Schur-Weyl duality and the heat kernel measure on the unitary group., Adv. Math., t. 218 (2008), pp. 537-575. | Article | MR 2407946 | Zbl 1147.60053
,[27] Lévy processes in Lie groups, Cambridge Tracts in Mathematics, vol. 162, Cambridge Univ. Press, 2004. | MR 2060091 | Zbl 1076.60004
-[28] Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math., t. 3 (1977), pp. 85-122. | Article | MR 515647 | Zbl 0397.57011
& -[29] Combinatorial group theory, Classics in Mathematics, Springer, 2001, Reprint of the 1977 edition. | Article | MR 1812024 | Zbl 0997.20037
& -[30] Algebraic topology: an introduction, Springer, 1977, Reprint of the 1967 edition, Graduate Texts in Mathematics, Vol. 56. | MR 448331 | Zbl 0457.55001
-[31] Recursion equations in gauge field theories, Sov. Phys. JETP, t. 42 (1975), pp. 413-418.
-[32] Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, 2001. | MR 1844449 | Zbl 0979.05002
& -[33] Geometric topology in dimensions and , Springer, 1977, Graduate Texts in Mathematics, Vol. 47. | MR 488059 | Zbl 0349.57001
-[34] The Yang-Mills measure for , J. Funct. Anal., t. 108 (1992), pp. 231-273. | Article | MR 1176676 | Zbl 0769.60009
-[35] Gauge theory on compact surfaces, Mem. Amer. Math. Soc, t. 126 (1997). | MR 1346931 | Zbl 0873.58076
,[36] The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton Univ. Press, 1999, Reprint of the 1957 edition, Princeton Paperbacks. | MR 1688579 | Zbl 0942.55002
-[37] The isoperimetric inequality for curves with self-intersections, Canad. Math. Bull., t. 24 (1981), pp. 161-167. | Article | MR 619441 | Zbl 0466.52009
-[38] Topology of Manifolds, American Mathematical Society Colloquium Publications, vol. 32, Amer. Math. Soc., 1949. | Article | MR 29491 | Zbl 0039.39602
-[39] On quantum gauge theories in two dimensions, Comm. Math. Phys., t. 141 (1991), pp. 153-209. | Article | MR 1133264 | Zbl 0762.53063
-[40] Two-dimensional gauge theories revisited, J. Geom. Phys., t. 9 (1992), pp. 303-368. | Article | MR 1185834 | Zbl 0768.53042
,[41] Conservation of isotopic spin and isotopic gauge invariance, Physical Rev., t. 96 (1954), pp. 191-195. | Article | MR 65437 | Zbl 1378.81075
& -[42] An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., t. 67 (1936), pp. 251-282. | Article | JFM 62.0250.02 | MR 1555421 | Zbl 0016.10404
-