On the effaceability of certain δ-functors
Représentations p-adiques de groupes p-adiques III : méthodes globales et géométriques, Astérisque, no. 331 (2010), pp. 461-469.
@incollection{AST_2010__331__461_0,
     author = {Emerton, Matthew and Pa\v{s}k\={u}nas, Vytautas},
     title = {On the effaceability of certain $\delta$-functors},
     booktitle = {Repr\'esentations $p$-adiques de groupes $p$-adiques III : m\'ethodes globales et g\'eom\'etriques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {331},
     year = {2010},
     zbl = {1198.22010},
     mrnumber = {2667892},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2010__331__461_0/}
}
TY  - CHAP
AU  - Emerton, Matthew
AU  - Paškūnas, Vytautas
TI  - On the effaceability of certain $\delta$-functors
BT  - Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques
AU  - Collectif
T3  - Astérisque
PY  - 2010
DA  - 2010///
IS  - 331
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2010__331__461_0/
UR  - https://zbmath.org/?q=an%3A1198.22010
UR  - https://www.ams.org/mathscinet-getitem?mr=2667892
LA  - en
ID  - AST_2010__331__461_0
ER  - 
%0 Book Section
%A Emerton, Matthew
%A Paškūnas, Vytautas
%T On the effaceability of certain $\delta$-functors
%B Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques
%A Collectif
%S Astérisque
%D 2010
%N 331
%I Société mathématique de France
%G en
%F AST_2010__331__461_0
Emerton, Matthew; Paškūnas, Vytautas. On the effaceability of certain $\delta$-functors, in Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques, Astérisque, no. 331 (2010), pp. 461-469. http://archive.numdam.org/item/AST_2010__331__461_0/

[1] C. Breuil & V. Paškūnas - "Towards a modulo p Langlands correspondence for GL 2 ", to appear in Memoirs of the Amer. Math. Soc. | MR | Zbl

[2] M. Emerton - "Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties", this volume. | Numdam | Zbl

[3] M. Emerton - "Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors", this volume. | Numdam | Zbl

[4] V. Paškūnas - "Coefficient systems and supersingular representations of GL 2 (F)", Mémoires de la SMF 99 (2004). | Numdam | MR | Zbl

[5] V. Paškūnas - "Admissible unitary completions of locally p -rational representations of GL 2 (F)", to appear in Represent. Theory. | MR | Zbl