Cascade of phases in turbulent flows  [ Cascade de phases pour des fluides turbulents ]
Bulletin de la Société Mathématique de France, Tome 134 (2006) no. 1, p. 33-82
Cet article étudie les équations d'Euler incompressible (ou de Navier-Stokes en présence de viscosité évanescente). On y décrit la propagation de quasi-singularités. Les phénomènes sous-jacents confirment l'idée selon laquelle il se produit une cascade d'énergie.
This article is devoted to incompressible Euler equations (or to Navier-Stokes equations in the vanishing viscosity limit). It describes the propagation of quasi-singularities. The underlying phenomena are consistent with the notion of a cascade of energy.
DOI : https://doi.org/10.24033/bsmf.2501
Classification:  35A21,  35C20,  35L,  35Q30,  35Q35
Mots clés: mécanique des fluides, Euler, Navier-Stokes, optique géométrique non linéaire, turbulence, propagation des singularités, problèmes de fermeture
@article{BSMF_2006__134_1_33_0,
     author = {Cheverry, Christophe},
     title = {Cascade of phases in turbulent flows},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {134},
     number = {1},
     year = {2006},
     pages = {33-82},
     doi = {10.24033/bsmf.2501},
     zbl = {1116.35002},
     mrnumber = {2233700},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_2006__134_1_33_0}
}
Cheverry, Christophe. Cascade of phases in turbulent flows. Bulletin de la Société Mathématique de France, Tome 134 (2006) no. 1, pp. 33-82. doi : 10.24033/bsmf.2501. http://www.numdam.org/item/BSMF_2006__134_1_33_0/

[1] C. Bardos - « What use for the mathematical theory of the Navier-Stokes equations », Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2001, p. 1-25. | MR 1865047 | Zbl 0992.35069

[2] J. Beale, T. Kato & A. Majda - « Remarks on the breakdown of smooth solutions for the 3D Euler equations », (1994), p. 61-66. | MR 763762 | Zbl 0573.76029

[3] A. Bertozzi & A. Majda - Vorticity and Incompressible Flow, Cambridge University Press, 2002. | MR 1867882 | Zbl 0983.76001

[4] T. Chacon Rebollo - « Oscillations due to the transport of microstructures », SIAM J. Appl. Math. 48 (1988). | MR 960475 | Zbl 0656.76054

[5] J.-Y. Chemin - Perfect Incompressible Fluids, Oxford Lecture Series in Math. and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998, translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. | MR 1688875 | Zbl 0829.76003 | Zbl 0927.76002

[6] J.-Y. Chemin, B. Desjardins, I. Gallagher & E. Grenier - « Fluids with anisotropic viscosity », Math. Modelling Num. Anal. 34 (2000), p. 315-335. | Numdam | MR 1765662 | Zbl 0954.76012

[7] C. Cheverry - « Propagation of oscillations in real vanishing viscosity limit », 247 (2004), p. 655-695. | MR 2062647 | Zbl 1079.35060

[8] C. Cheverry, O. Guès & G. Métivier - « Oscillations fortes sur un champ linéairement dégénéré », 36 (2003), p. 691-745. | Numdam | MR 2032985 | Zbl 1091.35039

[9] -, « Large amplitude high frequency waves for quasilinear hyperbolic systems », Advances in Differential Equations (to appear). | MR 2100397 | Zbl 1107.35079

[10] P. Constantin & C. Fefferman - « Direction of vorticity and the problem of global regularity for the Navier-Stokes equations », Indiana Univ. Math. J. 42 (1993), p. 775-789. | MR 1254117 | Zbl 0837.35113

[11] A. Corli & O. Guès - « Stratified solutions for systems of conservation laws », 353 (2001), p. 2459-2486. | MR 1814078 | Zbl 0974.35073

[12] R.-J. Diperna & A.-J. Majda - « Oscillations and concentrations in weak solutions of the incompressible fluid equations », 108 (1987), p. 667-689. | MR 877643 | Zbl 0626.35059

[13] J. Duchon & R. Robert - « Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations », Nonlinearity 13 (2000), p. 249-255. | MR 1734632 | Zbl 1009.35062

[14] W. E - « Homogenization of linear and non linear transport equations », Comm. Pure Appl. Math. 45 (1992), p. 301-326. | MR 1151269 | Zbl 0794.35014

[15] -, « Propagation of oscillations in the solutions of 1D compressible fluid equations », 17 (1992), p. 347-370. | MR 1163429 | Zbl 0760.35007

[16] C. Foias, P.-P. Manley, R. Rosa & R. Temam - « Cascade of energy in turbulent flows », 332 (2001), p. 509-514. | MR 1834060 | Zbl 0986.35089

[17] S. Friedlandler, W. Strauss & M. Vishik - « Nonlinear instability in an ideal fluid », Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), p. 187-209. | Numdam | MR 1441392 | Zbl 0874.76026

[18] P. Gérard - « Microlocal defect measures », 16 (1991), p. 1761-1794. | MR 1135919 | Zbl 0770.35001

[19] E. Grenier - « On the nonlinear instability of Euler and Prandtl equations », 53 (2000), p. 1067-1091. | MR 1761409 | Zbl 1048.35081

[20] O. Guès - « Ondes multidimensionnelles ε-stratifiées et oscillations », 68 (1992), p. 401-446. | MR 1194948 | Zbl 0837.35086

[21] -, « Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires », Asymp. Anal. 6 (1993), p. 241-269. | MR 1201195 | Zbl 0780.35017

[22] J.-L. Joly, G. Métivier & J. Rauch - « Transparent non linear geometric optics and Maxwell-Bloch equations », 166 (2000), p. 175-250. | MR 1779260 | Zbl 1170.78311

[23] D. Lannes - « Secular growth for symmetric hyperbolic systems », 90 (2003), p. 466-503. | MR 1970038 | Zbl 1052.35119

[24] M. Lesieur - Turbulence in Fluids, Fluid Mechanics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997. | MR 1447438 | Zbl 0876.76002

[25] P.-L. Lions - Mathematical Topics in Fluid Mechanics, Vol.1, Incompressible Models, Oxford Science Publications. | MR 1637634 | MR 1422251 | Zbl 0866.76002

[26] D. Mclaughlin, G. Papanicolaou & O. Pironneau - « Convection of microstructure and related problems », SIAM J. Appl. Math. 45 (1985). | MR 804006 | Zbl 0519.76046 | Zbl 0622.76062

[27] S. Schochet - « Fast singular limits of hyperbolic PDEs », 114 (1994), p. 476-512. | MR 1303036 | Zbl 0838.35071

[28] D. Serre - « Oscillations nonlinéaires de haute fréquence, dim2 », Nonlinear Variational Problems and Partial Differential Equations (A. Marino & M. Murthy, éds.), Pitman Res. Notes in Math., vol. 320, Longman, London, 1995, p. 245-294. | MR 1330015 | Zbl 0843.35054

[29] T. Sideris - « Formation of singularities in compressible fluids », Commun. Math. Phys. 101 (1985), p. 475-485. | MR 815196 | Zbl 0606.76088