@article{CM_1984__53_1_91_0, author = {Sibner, L. M.}, title = {Removable singularities of {Yang-Mills} fields in $R^3$}, journal = {Compositio Mathematica}, pages = {91--104}, publisher = {Martinus Nijhoff Publishers}, volume = {53}, number = {1}, year = {1984}, mrnumber = {762308}, zbl = {0552.58037}, language = {en}, url = {http://archive.numdam.org/item/CM_1984__53_1_91_0/} }
Sibner, L. M. Removable singularities of Yang-Mills fields in $R^3$. Compositio Mathematica, Tome 53 (1984) no. 1, pp. 91-104. http://archive.numdam.org/item/CM_1984__53_1_91_0/
[1] Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (1981) 189-203. | MR | Zbl
and :[2] Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne. J. Math. Pures et Appl. 54 (1975) 259-284. | MR | Zbl
and :[3] Euclidean Yang-Mills and related equations, Bifurcation Phenomena in Math. Phys. and Related Topics, 243-267, D. Reidel (1980). | MR
:[4] Vortices and Monopoles, Progress in Physics 2. Boston: Birkhäuser (1980). | MR | Zbl
and :[5] Multiple integrals in the calculus of variations. New York: Springer (1966). | MR | Zbl
:[6] Gauge theories on four dimensional manifolds. Ph. D. thesis, Stanford (1980).
:[7] Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83 (1982) 11-29. | MR | Zbl
:[8] Connections with Lp bounds on curvature. Comm. Math. Phys. 83 (1982) 31-42. | MR | Zbl
:[9] Removable singularities of coupled Yang-Mills fields in R3, Comm. Math. Phys. 93 (1984) 1-17. | MR | Zbl
: