@article{CM_1984__53_1_51_0, author = {Vogan, David A. and Zuckerman, Gregg J.}, title = {Unitary representations with non-zero cohomology}, journal = {Compositio Mathematica}, pages = {51--90}, publisher = {Martinus Nijhoff Publishers}, volume = {53}, number = {1}, year = {1984}, mrnumber = {762307}, zbl = {0692.22008}, language = {en}, url = {http://archive.numdam.org/item/CM_1984__53_1_51_0/} }
TY - JOUR AU - Vogan, David A. AU - Zuckerman, Gregg J. TI - Unitary representations with non-zero cohomology JO - Compositio Mathematica PY - 1984 SP - 51 EP - 90 VL - 53 IS - 1 PB - Martinus Nijhoff Publishers UR - http://archive.numdam.org/item/CM_1984__53_1_51_0/ LA - en ID - CM_1984__53_1_51_0 ER -
Vogan, David A.; Zuckerman, Gregg J. Unitary representations with non-zero cohomology. Compositio Mathematica, Volume 53 (1984) no. 1, pp. 51-90. http://archive.numdam.org/item/CM_1984__53_1_51_0/
[1] The unitary spectrum for real rank one groups. Invent. Math. 72 (1983) 27-55. | MR | Zbl
and :[2] Continuous cohomology, discrete subgroups, representations of reductive groups, Princeton University Press, Princeton, New Jersey (1980). | MR | Zbl
and :[3] The n-cohomology of representations with an infinitesimal character. Comp. Math. 31 (1975) 219-227. | Numdam | MR | Zbl
and :[4] Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J. 46 (1979) 513-525. | MR | Zbl
:[5] Cohomologie des groupes topologiques et des algèbres de Lie, CEDIC-Fernand Nathan, Paris (1980). | MR | Zbl
:[6] Representations of semi-simple Lie groups I. Trans. Amer. Math. Soc. 75 (1953) 185-243. | MR | Zbl
:[7] Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). | MR | Zbl
:[8] A geometric meaning of the multiplicities of integrable discrete classes in L2(Γ\G). Osaka J. Math. 10 (1973) 211-234. | Zbl
and :[9] Introduction to Lie algebras and representation theory. Springer-Verlag, New York Heidelberg Berlin (1972). | MR | Zbl
:[10] The canonical f-types of the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math. 59 (1980) 1-11. | EuDML | MR | Zbl
:[11] Dirac operator and the discrete series. Ann. Math. 96 (1972) 1-30. | MR | Zbl
:[12] A generalization of the Enright-Varadarajan modules. Comp. Math. 36 (1978) 53-73. | EuDML | Numdam | MR | Zbl
:[13] Criteria for the unitarizability of some highest weight modules. Proc. Indian Acad. Sci. 89 (1980) 1-24.. | MR | Zbl
:[14] Representations of complex semi-simple Lie groups and Lie algebras. Ann. Math. 85 (1967) 383-429. | MR | Zbl
, and :[15] Unitary representations of GL(n, R) with non-trivial (g, K ) cohomology. Invent. Math. 71 (1983) 443-465. | EuDML | MR | Zbl
:[16] Unitary representations of SL(n, R) and the cohomology of congruence subgroups, In. Noncommutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics 880, Springer-Verlag, Berlin Heidelberg New York (1981). | MR | Zbl
:[17] Reducibility of generalized principal series representations. Acta Math. 145 (1980) 227-299. | MR | Zbl
and :[18] The algebraic structure of the representations of semi-simple Lie groups I. Ann. Math. 109 (!979) 1-60. | MR | Zbl
:[19] Representations of real reductive Lie groups, Birkhäuser, Boston-Vasel-Stuttgart (1981). | MR | Zbl
:[20] Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin Heidelberg New York (1972). | MR | Zbl
:[21] Singular unitary representations and indefinite harmonic theory, to appear in J. Func. Anal., 1983. | MR | Zbl
, and :