@article{CM_1984__53_3_337_0, author = {Sands, J. W.}, title = {Abelian fields and the {Brumer-Stark} conjecture}, journal = {Compositio Mathematica}, pages = {337--346}, publisher = {Martinus Nijhoff Publishers}, volume = {53}, number = {3}, year = {1984}, mrnumber = {768828}, zbl = {0552.12007}, language = {en}, url = {http://archive.numdam.org/item/CM_1984__53_3_337_0/} }
Sands, J. W. Abelian fields and the Brumer-Stark conjecture. Compositio Mathematica, Volume 53 (1984) no. 3, pp. 337-346. http://archive.numdam.org/item/CM_1984__53_3_337_0/
[1] Values of abelian L-functions at negative integers over totally real fields. Inventiones Mathematicae 59 (1980) 227-286. | MR | Zbl
and ,[2] P-adic L-series at s = 0, manuscript for J. Fac. Sci., U. Tokyo, Sect. IA 28 (1981), No. 3, 979-994. | MR | Zbl
,[3] Einige Eigenschaften Dirichlet'schen Funktionen. Zeit. fur Math. Phys. 27 (1882) 86-101(Math Werke I, 72-88). | JFM
,[4] Jacobi-sum Hecke characters and Gauss sum identities. Comp Math. 48 (1983) Fasc. 1, 55-87. | Numdam | MR | Zbl
and ,[5] Cyclotomic Fields. Springer-Verlag, New York (1978). | MR | Zbl
,[6] A generalization of Stickelbergers' Theorem. Ph.D. Thesis, McGill, Montreal (1970).
,[7] The Conjecture of Gross and Stark for Special Values of Abelian L-series over Totally Real Fields. Ph.D. Thesis, U.C.S.D., San Diego (1982).
,[8] L-functions at s =1. IV. First derivatives at s = 0, Advances in Math. 35 (1980) 197-235. | MR | Zbl
,[9] Values of Zeta and L-functions, to appear in proceedings of conference to honor Dedekind's 150th birthday. | MR
,[10] Brumer-Stark-Stickelberger, Seminaire de Theorie des Nombres Annee 1980-81, expose no. 24. | MR | Zbl
,[11] On Stark's conjectures on the behavior of L(s,X) at s = 0. J. Fac. Sci. U. Tokyo Sect. IA 28 (1981), No. 3, 963-978. | MR | Zbl
,[12] Jacobi sums as Grössencharaktere. Trans Am. Math. Soc. 23 (1952) 487-495. | MR | Zbl
,[13] Sommes de Jacobi et caracteres de Hecke. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Klasse (1974) 1-14. | MR | Zbl
,