@article{CM_1987__63_2_189_0, author = {Brion, M.}, title = {Classification des espaces homog\`enes sph\'eriques}, journal = {Compositio Mathematica}, pages = {189--208}, publisher = {Martinus Nijhoff Publishers}, volume = {63}, number = {2}, year = {1987}, mrnumber = {906369}, zbl = {0642.14011}, language = {fr}, url = {http://archive.numdam.org/item/CM_1987__63_2_189_0/} }
Brion, M. Classification des espaces homogènes sphériques. Compositio Mathematica, Volume 63 (1987) no. 2, pp. 189-208. http://archive.numdam.org/item/CM_1987__63_2_189_0/
[A] Actions with a finite number of orbits. Funct. Analysis Appl. 19 (1985) 1-4. | MR | Zbl
:[BLV] Espaces homogènes sphériques. Inventiones Math. 84 (1986) 617-632. | MR | Zbl
, and :[B1] Quelques propriétés des espaces homogènes sphériques. Manuscripta Math. 55 (1986) 191-198. | MR | Zbl
:[B2] Classification des espaces homogènes sphériques. C.R.A.S. Paris, t. 301, série 1, n 18 (1985) 813-816. | MR | Zbl
:[B3] Représentations exceptionnelles des groupes semi-simples. Ann. Scient. Ec. Norm. Sup. t. 18 (1985) 345-387. | Numdam | MR | Zbl
:[BT] Groupes réductifs. Publications mathématiques de l'I.H.E.S. no 27 (1965) 55-150. | Numdam | MR | Zbl
and :[D] Semisimple subalgebras of semisimple algebras. A.M.S. Translations series 2, vol. 6, pp. 11-244. | Zbl
:[GS] Multiplicity-free spaces. J. Diff. Geom. 19 (1984) 31-56. | MR | Zbl
et :[He] Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press (1978). | MR | Zbl
:[Hu] Linear algebraic groups. Graduate Text in Mathematics no 21 (Springer-Verlag). | MR | Zbl
:[K] Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math. 38 (1979) 129-153. | Numdam | MR | Zbl
:[K'] Multiplicity-free subgroups of compact connected Lie groups. Arch. Math. (Basel) 27 (1976) 28-36. | MR | Zbl
:[Ka] Some remarks on nilpotent orbits. J. of Alg. 64 (1980) 190-213. | MR | Zbl
:[M] On the integrability of invariant hamiltonian systems with homogeneous configuration spaces (en russe). Math. Sbornik 129 (171) (1986) 514-534. | MR | Zbl
: