Some properties of positive superharmonic functions
Compositio Mathematica, Tome 72 (1989) no. 1, p. 115-120
@article{CM_1989__72_1_115_0,
     author = {Zeinstra, Rein L.},
     title = {Some properties of positive superharmonic functions},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {72},
     number = {1},
     year = {1989},
     pages = {115-120},
     zbl = {0706.31004},
     mrnumber = {1026331},
     language = {en},
     url = {http://www.numdam.org/item/CM_1989__72_1_115_0}
}
Zeinstra, Rein L. Some properties of positive superharmonic functions. Compositio Mathematica, Tome 72 (1989) no. 1, pp. 115-120. https://www.numdam.org/item/CM_1989__72_1_115_0/

1. B. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain. Indiana Univ. Math. J. 27 (1978) 515-526. | MR 486569 | Zbl 0402.31011

2. B. Davis, and J. Lewis, Paths for subharmonic functions. Proc. London Math. Soc. 48 (1984) 401-427. | MR 735222 | Zbl 0541.31001

3. J. Deny, Un théorème sur les ensembles effilés. Ann. Univ. Grenoble 23 (1948) 139-142. | Numdam | MR 24531 | Zbl 0030.05602

3a. M. Essén, and H.L. Jackson, A comparision between thin sets and generalized Azarin sets. Canad. Math. Bull. 18 (1975) 335-346. | MR 409848 | Zbl 0318.31005

4. M. De Guzman, Différentiation of integrals in Rn. Lecture Notes in Maths. 481. Springer-Verl., Berlin 1975. | Zbl 0327.26010

4a. L.S. Kudina, Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija 14 (Charkov 1971).

5. N.S. Landkof, Foundations of modern potential theory. Springer-Verl., Berlin 1972. | MR 350027 | Zbl 0253.31001

6. D.H. Luecking, Boundary behavior of Green potentials. Proc. Am. Math. Soc. 96 (1986) 481-488. | MR 822445 | Zbl 0594.31009

7. Y. Mizuta, Boundary limits of Green potentials of general order. Proc. Am. Math. Soc. 101 (1987) 131-135. | MR 897083 | Zbl 0659.31007

8. P.J. Rippon, On the boundary behaviour of Green potentials. Proc. London Math. Soc. 38 (1979) 461-480. | MR 532982 | Zbl 0417.31008

9. M. Stoll, Boundary limits of Green potentials in the unit disc. Arch. Math. 44 (1985) 451-455. | MR 792369 | Zbl 0553.31003

10. E. Tolsted, Limiting values of subharmonic functions. Proc. Am. Math. Soc. 1 (1950) 636-647. | MR 39862 | Zbl 0039.32403

11. K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967) 17-37. | MR 239264 | Zbl 0164.13101

12. J.M. Wu, Content and harmonic measure - an extension of Hall's lemma. Indiana Univ. Math. J. 36 (1987) 403-420. | MR 891782 | Zbl 0639.31004

13. J.M. Wu, Boundary limits of Green's potentials along curves. Studia Math. 60 (1977) 137-144. | MR 499241 | Zbl 0354.31002