Some properties of positive superharmonic functions
Compositio Mathematica, Volume 72 (1989) no. 1, pp. 115-120.
@article{CM_1989__72_1_115_0,
     author = {Zeinstra, Rein L.},
     title = {Some properties of positive superharmonic functions},
     journal = {Compositio Mathematica},
     pages = {115--120},
     publisher = {Kluwer Academic Publishers},
     volume = {72},
     number = {1},
     year = {1989},
     zbl = {0706.31004},
     mrnumber = {1026331},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1989__72_1_115_0/}
}
TY  - JOUR
AU  - Zeinstra, Rein L.
TI  - Some properties of positive superharmonic functions
JO  - Compositio Mathematica
PY  - 1989
DA  - 1989///
SP  - 115
EP  - 120
VL  - 72
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1989__72_1_115_0/
UR  - https://zbmath.org/?q=an%3A0706.31004
UR  - https://www.ams.org/mathscinet-getitem?mr=1026331
LA  - en
ID  - CM_1989__72_1_115_0
ER  - 
%0 Journal Article
%A Zeinstra, Rein L.
%T Some properties of positive superharmonic functions
%J Compositio Mathematica
%D 1989
%P 115-120
%V 72
%N 1
%I Kluwer Academic Publishers
%G en
%F CM_1989__72_1_115_0
Zeinstra, Rein L. Some properties of positive superharmonic functions. Compositio Mathematica, Volume 72 (1989) no. 1, pp. 115-120. http://archive.numdam.org/item/CM_1989__72_1_115_0/

1. B. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain. Indiana Univ. Math. J. 27 (1978) 515-526. | MR | Zbl

2. B. Davis, and J. Lewis, Paths for subharmonic functions. Proc. London Math. Soc. 48 (1984) 401-427. | MR | Zbl

3. J. Deny, Un théorème sur les ensembles effilés. Ann. Univ. Grenoble 23 (1948) 139-142. | Numdam | MR | Zbl

3a. M. Essén, and H.L. Jackson, A comparision between thin sets and generalized Azarin sets. Canad. Math. Bull. 18 (1975) 335-346. | MR | Zbl

4. M. De Guzman, Différentiation of integrals in Rn. Lecture Notes in Maths. 481. Springer-Verl., Berlin 1975. | Zbl

4a. L.S. Kudina, Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija 14 (Charkov 1971).

5. N.S. Landkof, Foundations of modern potential theory. Springer-Verl., Berlin 1972. | MR | Zbl

6. D.H. Luecking, Boundary behavior of Green potentials. Proc. Am. Math. Soc. 96 (1986) 481-488. | MR | Zbl

7. Y. Mizuta, Boundary limits of Green potentials of general order. Proc. Am. Math. Soc. 101 (1987) 131-135. | MR | Zbl

8. P.J. Rippon, On the boundary behaviour of Green potentials. Proc. London Math. Soc. 38 (1979) 461-480. | MR | Zbl

9. M. Stoll, Boundary limits of Green potentials in the unit disc. Arch. Math. 44 (1985) 451-455. | MR | Zbl

10. E. Tolsted, Limiting values of subharmonic functions. Proc. Am. Math. Soc. 1 (1950) 636-647. | MR | Zbl

11. K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967) 17-37. | MR | Zbl

12. J.M. Wu, Content and harmonic measure - an extension of Hall's lemma. Indiana Univ. Math. J. 36 (1987) 403-420. | MR | Zbl

13. J.M. Wu, Boundary limits of Green's potentials along curves. Studia Math. 60 (1977) 137-144. | MR | Zbl