An improvement of the quantitative subspace theorem
Compositio Mathematica, Volume 101 (1996) no. 3, pp. 225-311.
@article{CM_1996__101_3_225_0,
     author = {Evertse, Jan-Hendrik},
     title = {An improvement of the quantitative subspace theorem},
     journal = {Compositio Mathematica},
     pages = {225--311},
     publisher = {Kluwer Academic Publishers},
     volume = {101},
     number = {3},
     year = {1996},
     mrnumber = {1394517},
     zbl = {0856.11030},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1996__101_3_225_0/}
}
TY  - JOUR
AU  - Evertse, Jan-Hendrik
TI  - An improvement of the quantitative subspace theorem
JO  - Compositio Mathematica
PY  - 1996
SP  - 225
EP  - 311
VL  - 101
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1996__101_3_225_0/
LA  - en
ID  - CM_1996__101_3_225_0
ER  - 
%0 Journal Article
%A Evertse, Jan-Hendrik
%T An improvement of the quantitative subspace theorem
%J Compositio Mathematica
%D 1996
%P 225-311
%V 101
%N 3
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1996__101_3_225_0/
%G en
%F CM_1996__101_3_225_0
Evertse, Jan-Hendrik. An improvement of the quantitative subspace theorem. Compositio Mathematica, Volume 101 (1996) no. 3, pp. 225-311. http://archive.numdam.org/item/CM_1996__101_3_225_0/

1 Bombieri, E. and Van Der Poorten, A.J.: Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (Ser. A) 45 (1988), 233-248, Corrigenda, ibid, 48 (1990), 154-155. | MR | Zbl

2 Bombieri, E. and Vaaler, J.: On Siegel's Lemma, Invent. Math. 73 (1983), 11-32. | EuDML | MR | Zbl

3 Esnault, H. and Viehweg, E.: Dyson's Lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. 78 (1984), 445-490. | EuDML | MR | Zbl

4 Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation, Invent. Math. 75, 561-584. | EuDML | MR | Zbl

5 Evertse, J.-H.: The Subspace theorem of W.M. Schmidt, in: Diophantine approximation and abelian varieties, Edixhoven, B., Evertse, J.-H., eds. Lecture Notes Math. 1566, Springer Verlag, Berlin etc. 1993, Chap. IV. | MR | Zbl

6 Evertse, J.-H.: An explicit version of Faltings' Product theorem and an improvement of Roth's lemma, Acta Arith. 73 (1995), 215-248. | EuDML | MR | Zbl

7 Faltings, G.: Diophantine approximation on abelian varieties, Annals of Math. 133 (1991), 549-576. | MR | Zbl

8 Faltings, G. and Wüstholz, G.: Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109-138. | EuDML | MR | Zbl

9 Gross, R.: A note on Roth's theorem, J. of Number Theory 36 (1990), 127-132. | MR | Zbl

10 Lang, S.: Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1970. | MR | Zbl

11 Mcfeat, R.B.: Geometry of numbers in adele spaces, Dissertationes Mathematicae 88, PWN Polish Scient. Publ., Warsaw, 1971. | MR | Zbl

12 Mahler, K.: Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), 425-448. | MR | Zbl

13 Roth, K.F.: Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | MR | Zbl

14 Schlickewei, H.P.: The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270. | MR | Zbl

15 Schlickewei, H.P.: The number of subspaces occurring in the p-adic Subspace Theorem in Diophantine approximation, J. reine angew. Math. 406 (1990), 44-108. | MR | Zbl

16 Schlickewei, H.P.: The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273. | Numdam | MR | Zbl

17 Schmidt, W.M.: Norm form equations, Annals of Math. 96 (1972), 526-551. | MR | Zbl

18 Schmidt, W.M.: Diophantine approximation, Lecture Notes in Math. 785, Springer Verlag, Berlin etc., 1980 | MR | Zbl

19 Schmidt, W.M.: The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173. | Numdam | MR | Zbl

20 Silverman, J.H.: Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403. | MR | Zbl

21 Stark, H.M.: Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152. | MR | Zbl