An improvement of the quantitative subspace theorem
Compositio Mathematica, Volume 101 (1996) no. 3, p. 225-311
@article{CM_1996__101_3_225_0,
     author = {Evertse, Jan-Hendrik},
     title = {An improvement of the quantitative subspace theorem},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {101},
     number = {3},
     year = {1996},
     pages = {225-311},
     zbl = {0856.11030},
     mrnumber = {1394517},
     language = {en},
     url = {http://www.numdam.org/item/CM_1996__101_3_225_0}
}
Evertse, Jan-Hendrik. An improvement of the quantitative subspace theorem. Compositio Mathematica, Volume 101 (1996) no. 3, pp. 225-311. http://www.numdam.org/item/CM_1996__101_3_225_0/

1 Bombieri, E. and Van Der Poorten, A.J.: Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (Ser. A) 45 (1988), 233-248, Corrigenda, ibid, 48 (1990), 154-155. | MR 1026847 | Zbl 0697.10028

2 Bombieri, E. and Vaaler, J.: On Siegel's Lemma, Invent. Math. 73 (1983), 11-32. | MR 707346 | Zbl 0533.10030

3 Esnault, H. and Viehweg, E.: Dyson's Lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. 78 (1984), 445-490. | MR 768988 | Zbl 0545.10021

4 Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation, Invent. Math. 75, 561-584. | MR 735341 | Zbl 0521.10015

5 Evertse, J.-H.: The Subspace theorem of W.M. Schmidt, in: Diophantine approximation and abelian varieties, Edixhoven, B., Evertse, J.-H., eds. Lecture Notes Math. 1566, Springer Verlag, Berlin etc. 1993, Chap. IV. | MR 1289002 | Zbl 0812.11039

6 Evertse, J.-H.: An explicit version of Faltings' Product theorem and an improvement of Roth's lemma, Acta Arith. 73 (1995), 215-248. | MR 1364461 | Zbl 0857.11034

7 Faltings, G.: Diophantine approximation on abelian varieties, Annals of Math. 133 (1991), 549-576. | MR 1109353 | Zbl 0734.14007

8 Faltings, G. and W├╝stholz, G.: Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109-138. | MR 1253191 | Zbl 0805.14011

9 Gross, R.: A note on Roth's theorem, J. of Number Theory 36 (1990), 127-132. | MR 1068678 | Zbl 0722.11034

10 Lang, S.: Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1970. | MR 282947 | Zbl 0211.38404

11 Mcfeat, R.B.: Geometry of numbers in adele spaces, Dissertationes Mathematicae 88, PWN Polish Scient. Publ., Warsaw, 1971. | MR 318104 | Zbl 0229.10014

12 Mahler, K.: Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), 425-448. | MR 176975 | Zbl 0218.12004

13 Roth, K.F.: Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | MR 72182 | Zbl 0064.28501

14 Schlickewei, H.P.: The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270. | MR 491529 | Zbl 0365.10026

15 Schlickewei, H.P.: The number of subspaces occurring in the p-adic Subspace Theorem in Diophantine approximation, J. reine angew. Math. 406 (1990), 44-108. | MR 1048236 | Zbl 0693.10027

16 Schlickewei, H.P.: The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273. | Numdam | MR 1163217 | Zbl 0751.11033

17 Schmidt, W.M.: Norm form equations, Annals of Math. 96 (1972), 526-551. | MR 314761 | Zbl 0226.10024

18 Schmidt, W.M.: Diophantine approximation, Lecture Notes in Math. 785, Springer Verlag, Berlin etc., 1980 | MR 568710 | Zbl 0421.10019

19 Schmidt, W.M.: The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173. | Numdam | MR 984633 | Zbl 0683.10027

20 Silverman, J.H.: Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403. | MR 747871 | Zbl 0579.14035

21 Stark, H.M.: Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152. | MR 342472 | Zbl 0278.12005