@article{COCV_1999__4__667_0, author = {Demengel, Fran\c{c}oise}, title = {On some nonlinear partial differential equations involving the {\textquotedblleft}1{\textquotedblright}-laplacian and critical {Sobolev} exponent}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {667--686}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1746172}, zbl = {0939.35070}, language = {en}, url = {http://archive.numdam.org/item/COCV_1999__4__667_0/} }
TY - JOUR AU - Demengel, Françoise TI - On some nonlinear partial differential equations involving the “1”-laplacian and critical Sobolev exponent JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 667 EP - 686 VL - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_1999__4__667_0/ LA - en ID - COCV_1999__4__667_0 ER -
%0 Journal Article %A Demengel, Françoise %T On some nonlinear partial differential equations involving the “1”-laplacian and critical Sobolev exponent %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 667-686 %V 4 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_1999__4__667_0/ %G en %F COCV_1999__4__667_0
Demengel, Françoise. On some nonlinear partial differential equations involving the “1”-laplacian and critical Sobolev exponent. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 667-686. http://archive.numdam.org/item/COCV_1999__4__667_0/
[1] Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 ( 1976) 573-598. | MR | Zbl
,[2] Nonlinear Analysis on manifolds-Monge-Ampère Equations. Grundlehern der Mathematischen Wissenschaften ( 1982) 252. | MR | Zbl
,[3] On a non linear elliptic equation involving the critical Sobolev exponent: The effet of the topology of the domain. Comm. Pure Appl. Math. 41 ( 1988) 253-294. | MR | Zbl
and ,[4] Some connections between isoperimetric and Sobolev type Inequalities. Mem. Amer. Math. Soc. 616 ( 1997). | MR | Zbl
and ,[5] Some compactness result for some spaces of functions with bounded derivatives. Arch. Rational Mech. Anal. 105 ( 1989) 123-161. | MR | Zbl
,[6] On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. I. Adv. Partial Differential Equations 3 ( 1998) 533-574. | MR | Zbl
and ,[7] Convex Analysis and variational problems. North-Holland ( 1976). | MR | Zbl
and ,[8] Minimal surfaces and functions of bounded variation, notes de cours rédigés par G.H. Williams. Department of Mathematics Australian National University, Canberra ( 1977), et Birkhaiiser ( 1984). | MR | Zbl
,[9] La méthode d'isométrie concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de Sobolev. Bull. Sci. Math. 116 ( 1992) 35-51. | MR | Zbl
,[10] Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev Growth. J. Funct. Anal. 119 ( 1994) 298-318. | MR | Zbl
and ,[11] La méthode de compacité concentration, I et II. Revista Ibero Americana 1 ( 1985) 145. | Zbl
,[12] Dual spaces of stress and strains with applications to Hencky plasticity. Appl. Math. Optim. 10 ( 1983) 1-35. | MR | Zbl
and ,[13] Stability results for some nonlinear elliptic equations involving the p-Laplacian with critical Sobolev growth, COCV, accepted Version française : Prepublication de l'Université de Cergy-Pontoise N 5/98, Avril 1998. | Numdam | MR | Zbl
,[14] Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 ( 1976) 353-372. | MR | Zbl
,[15] Functions with bounded variations. Arch. Rational Mech. Anal. ( 1980) 493-527. | MR | Zbl
and ,[16] Sur les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (6) 1 ( 1979) 77-87. | EuDML | Numdam | MR | Zbl
,[17] Weakly Differentiable functions. Springer Verlag, Lectures Notes in Math. 120 ( 1989). | MR | Zbl
,