Exact boundary controllability of 3-D Euler equation
ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 1-44.
@article{COCV_2000__5__1_0,
     author = {Glass, Olivier},
     title = {Exact boundary controllability of {3-D} {Euler} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--44},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     mrnumber = {1745685},
     zbl = {0940.93012},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_2000__5__1_0/}
}
TY  - JOUR
AU  - Glass, Olivier
TI  - Exact boundary controllability of 3-D Euler equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
SP  - 1
EP  - 44
VL  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_2000__5__1_0/
LA  - en
ID  - COCV_2000__5__1_0
ER  - 
%0 Journal Article
%A Glass, Olivier
%T Exact boundary controllability of 3-D Euler equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 1-44
%V 5
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_2000__5__1_0/
%G en
%F COCV_2000__5__1_0
Glass, Olivier. Exact boundary controllability of 3-D Euler equation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 1-44. http://archive.numdam.org/item/COCV_2000__5__1_0/

[1] C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, in Proceedings of the conference held at the university of Paris-Sud Orsay, France. Springer-Verlag, Lectures Notes in Math. 565 ( 1975) 1-13. | MR | Zbl

[2] J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems 5 ( 1992) 295-312. | MR | Zbl

[3] J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 ( 1993) 271-276. | MR | Zbl

[4] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 ( 1996) 155-188. | MR | Zbl

[5] J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var. 1 ( 1996) 35-75. http://www.emath.fr/cocv/. | EuDML | Numdam | MR | Zbl

[6] O. Glass, Exact boundary controllability of 3-D Euler equation of perfect incompressible fluids. C. R. Acad. Sci. Paris Sér. I Math. 325 ( 1997) 987-992. | MR | Zbl

[7] O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé XV. | EuDML | Numdam | MR | Zbl

[8] P. Hermann and H. Kersten, Über die stetige Abhängigkeit der Lösung des Neumann-Problems für die Prae-Maxwellschen Gleichungen von ihren Randdaten. Arch. Math. (Basel) 36 ( 1981) 79-82. | MR | Zbl

[9] A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR 44 ( 1981) 672-674. | Zbl

[10] J.-L. Lions, Are there connections between turbulence and controllability?, 9th INRIA International Conference, Antibes (June 12-15, 1990).

[11] R. Temam, Navier-Stokes equations and numerical analysis. North-Holland Pub. ( 1979). | MR | Zbl