Decomposition of non-archimedean analytic tori
Groupe de travail d'analyse ultramétrique, Tome 9 (1981-1982) no. 3, Exposé no. J18, 5 p.
@article{GAU_1981-1982__9_3_A19_0,
     author = {Van Steen, Quido},
     title = {Decomposition of non-archimedean analytic tori},
     journal = {Groupe de travail d'analyse ultram\'etrique},
     note = {talk:J18},
     pages = {J1--J5},
     publisher = {Secr\'etariat math\'ematique},
     volume = {9},
     number = {3},
     year = {1981-1982},
     zbl = {0529.14024},
     language = {en},
     url = {http://archive.numdam.org/item/GAU_1981-1982__9_3_A19_0/}
}
TY  - JOUR
AU  - Van Steen, Quido
TI  - Decomposition of non-archimedean analytic tori
JO  - Groupe de travail d'analyse ultramétrique
N1  - talk:J18
PY  - 1981-1982
SP  - J1
EP  - J5
VL  - 9
IS  - 3
PB  - Secrétariat mathématique
UR  - http://archive.numdam.org/item/GAU_1981-1982__9_3_A19_0/
LA  - en
ID  - GAU_1981-1982__9_3_A19_0
ER  - 
%0 Journal Article
%A Van Steen, Quido
%T Decomposition of non-archimedean analytic tori
%J Groupe de travail d'analyse ultramétrique
%Z talk:J18
%D 1981-1982
%P J1-J5
%V 9
%N 3
%I Secrétariat mathématique
%U http://archive.numdam.org/item/GAU_1981-1982__9_3_A19_0/
%G en
%F GAU_1981-1982__9_3_A19_0
Van Steen, Quido. Decomposition of non-archimedean analytic tori. Groupe de travail d'analyse ultramétrique, Tome 9 (1981-1982) no. 3, Exposé no. J18, 5 p. http://archive.numdam.org/item/GAU_1981-1982__9_3_A19_0/

[1] Gerritzen (L.). - On non-archimedean representations of abelian varieties, Math. Annalen, t. 196, 1972, p. 323-346. | EuDML | MR | Zbl

[2] Gerritzen (L.) and Van Der Put (M.). - Schottky groups and Mumford curves. - Berlin, Heidelberg, New York, Springer-Verlag, 1980 (Lecture Notes in Mathematics, 817). | MR | Zbl

[3] Shioda (T.) and Mitani (N.). - Singular abelian surfaces and binary quadratic forms, "Classification of algebraic varieties and compact complex manifolds", p. 259-287. - Berlin, Heidelberg, New York, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 412). | MR | Zbl