@article{JEDP_1987____A10_0, author = {Melrose, Richard B.}, title = {Semilinear waves with cusp singularities}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {10}, publisher = {Ecole polytechnique}, year = {1987}, zbl = {0656.35098}, mrnumber = {89b:58209}, language = {en}, url = {http://archive.numdam.org/item/JEDP_1987____A10_0/} }
TY - JOUR AU - Melrose, Richard B. TI - Semilinear waves with cusp singularities JO - Journées équations aux dérivées partielles PY - 1987 DA - 1987/// PB - Ecole polytechnique UR - http://archive.numdam.org/item/JEDP_1987____A10_0/ UR - https://zbmath.org/?q=an%3A0656.35098 UR - https://www.ams.org/mathscinet-getitem?mr=89b:58209 LA - en ID - JEDP_1987____A10_0 ER -
Melrose, Richard B. Semilinear waves with cusp singularities. Journées équations aux dérivées partielles (1987), article no. 10, 10 p. http://archive.numdam.org/item/JEDP_1987____A10_0/
[1] Wave fronts evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 28 (1976), 557-582. | MR 55 #9148 | Zbl 0343.58003
,[2] Interaction des singularités pour les équations aux dérivées partielles non linéaires, Sem. Goulaouic Schwartz (1979-1980). | Numdam | Zbl 0449.35006
,[3] Second microlocalization and propagation of singularities for semi-linear hyperbolic equations, in “Proc. Int. Workshop and Symposium on hyperbolic equations, Kyoto,” 1984 (to appear). | Zbl 0669.35073
,[4] Quantification asymptotique et microlocalisations d'ordre supérieur, Sém. équations aux dérivées partielles Exp II (1986-1987). | Numdam | Zbl 0654.35005
and ,[5] Pseudodifferential operators on manifolds with corner, Preprint.
,[6] Marked Lagrangian distributions, In preparation.
,[7] Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. 121 (1985), 187-213. | MR 86m:35005 | Zbl 0575.35063
and ,[8] Interaction of progressing waves for semilinear wave equations II, Inst. Mittag-Leffler Report (1985), no. 7, Math. Scand. (to appear). | Zbl 0575.35063
and ,[9] Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math. 32 (1979), 483-519. | MR 81d:58052 | Zbl 0396.58006
and ,