Spectral analysis of perturbed multiplication operators occurring in polymerization chemistry
Journées équations aux dérivées partielles (1989), article no. 19, 6 p.
@article{JEDP_1989____A19_0,
     author = {Kokholm, Niels Joergen},
     title = {Spectral analysis of perturbed multiplication operators occurring in polymerization chemistry},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Ecole polytechnique},
     year = {1989},
     zbl = {0689.45018},
     mrnumber = {91b:47115},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1989____A19_0}
}
Kokholm, Niels Joergen. Spectral analysis of perturbed multiplication operators occurring in polymerization chemistry. Journées équations aux dérivées partielles (1989), article  no. 19, 6 p. http://www.numdam.org/item/JEDP_1989____A19_0/

[A-C] Aguilar, J., Combes, J. M., A Class of Analytic Perturbations for One-body Schrödinger Hamiltonians, Commun. Math. Phys. 22 (1971), 269-279. | MR 49 #10287 | Zbl 0219.47011

[B-L] Bak, T. A., Lu Binglin, Polymerisation Reactions in Closed and Open Systems, Lectures in Applied Mathematics 24 (1986), 63-79.

[C-L] Coddington, E. A., Levinson, N., “Theory of ordinary differential equations”, McGraw-Hill Book Company, inc., New York, Toronto, London, 1955. | MR 16,1022b | Zbl 0064.33002

[K] Kato, T., “Perturbation theory for linear operators”, Springer Verlag, Berlin, New York, 1966. | Zbl 0148.12601

[K-K] Kato, T., Kuroda, S. T., Theory of Simple Scattering and Eigenfunction Expansions, in “Functional analysis and related fields”, ed. Felix Browder, Procedings Chicago 1968, Springer Verlag, Berlin, Heidelberg, New York, 1970, pp. 99-131. | MR 52 #6464a | Zbl 0224.47004

[Ko1] Kokholm, N. J., Spectral Analysis of perturbed Multiplication Operators Occurring in Polymerisation Chemistry, Copenhagen University Mathematics Department Report Series, 1988 No. 3.

[Ko2] Kokholm, N. J., Spectral Analysis of perturbed Multiplication Operators Occurring in Polymerization Chemistry, Proc. Roy. Soc. Edin. (to appear). | Zbl 0714.45013