The magnetic Schrödinger operator and reverse Hölder class
Journées équations aux dérivées partielles (1996), article no. 17, 10 p.
@article{JEDP_1996____A17_0,
     author = {Shen, Zhongwei},
     title = {The magnetic {Schr\"odinger} operator and reverse {H\"older} class},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {17},
     pages = {1--10},
     publisher = {Ecole polytechnique},
     year = {1996},
     zbl = {0873.35079},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1996____A17_0/}
}
TY  - JOUR
AU  - Shen, Zhongwei
TI  - The magnetic Schrödinger operator and reverse Hölder class
JO  - Journées équations aux dérivées partielles
PY  - 1996
SP  - 1
EP  - 10
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/item/JEDP_1996____A17_0/
LA  - en
ID  - JEDP_1996____A17_0
ER  - 
%0 Journal Article
%A Shen, Zhongwei
%T The magnetic Schrödinger operator and reverse Hölder class
%J Journées équations aux dérivées partielles
%D 1996
%P 1-10
%I Ecole polytechnique
%U http://archive.numdam.org/item/JEDP_1996____A17_0/
%G en
%F JEDP_1996____A17_0
Shen, Zhongwei. The magnetic Schrödinger operator and reverse Hölder class. Journées équations aux dérivées partielles (1996), article  no. 17, 10 p. http://archive.numdam.org/item/JEDP_1996____A17_0/

[AHS] J. Avron, I. Herbst and B. Simon, Schrödinger Operators with Magnetic Fields. I. General Interaction, Duke Math. J. 45 (4) (1978), 847-883. | MR | Zbl

[F] C. Fefferman, The Uncertainty Principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | MR | Zbl

[Gu] D. Guibourg, Inégalités Maximales pour L'Opérateur de Schrödinger, Ph. D. Thesis, Université de Rennes-I (1992.). | Zbl

[Gur] D. Gurarie, Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger Type, Bull. Amer. Math. Soc. 15(2) (1986), 233-237. | MR | Zbl

[H] B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lectures Notes in Math., vol. 1336, Springer-Verlag, 1988. | MR | Zbl

[HM] B. Helffer and A. Mohamed, Caractérisation du spectre essentiel de lópérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier 38 (1988), 95-112. | Numdam | MR | Zbl

[HN1] B. Helffer and J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Math. 58, Birkhäuser, Boston (1985). | MR | Zbl

[HN2] B. Helffer and J. Nourrigat, Decrossance a l'infini des fonctions propres de l'opérateur de Schrödinger avec champ electromagnétique polynomial, J. Anal. Math. 58 (1992), 263-275. | MR | Zbl

[I] A. Iwatsuka, Magnetic Schrödinger Operators with Compact Resolvent, J. Math. Kyoto Univ. 26-3 (1986), 357-374. | MR | Zbl

[KS] R. Kerman and E. Sawyer, The Trace Inequality and Eigenvalue Estimates for Schrödinger Operators, Ann. Inst. Fourier (Grenoble) 36(4) (1986), 207-228. | Numdam | MR | Zbl

[MN] A. Mohamed and J. Nourrigat, Encadrement du N(λ) pour un opérator de Schrödinger avec un champ magnétique et un potentiel électrique, J. Math. Pures Appl. 70 (1991), 87-99. | MR | Zbl

[R] D. Robert, Comportement asymptotique des valurs propres d'opérateurs du type Schrödinger á potentiel “dégénéré”, J. Math. Pures Appl. 61(9) (1982), 275-300. | MR | Zbl

[Sh1] Z. Shen, Lp Estimates for Schrödinger Operators with Certain Potentials, Ann. Inst. Fourier (Grenoble) 45(2) (1995), 513-546. | Numdam | MR | Zbl

[Sh2] Z. Shen, On the Eigenvalue Asymptotics of Schrödinger Operators, preprint (1995).

[Sh3] Z. Shen, Eigenvalue Asymptotics and Exponential Decay of Eigenfunctions for Schrödinger Operators with Magnetic Fields, Trans. Amer. Math. Soc. (to appear). | Zbl

[Sh4] Z. Shen, Estimates in Lp for Magnetic Schrödinger Operators, preprint (1995).

[Sh5] Z. Shen, On the Number of Negative Eigenvalues for a Schrödinger Operator with Magnetic Field, Comm. Math. Phys. (to appear). | Zbl

[Si] B. Simon, Nonclassical Eigenvalue Asymptotics, J. Funct. Anal. 53 (1983), 84-98. | MR | Zbl

[So] M. Solomjak, Spectral Asymptotics of Schrödinger Operators with Non-regular Homogeneous Potential, Math. USSR Sb. 55 (1986), 19-38.

[St] E. Stein, Harmonic Analysis : Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | MR | Zbl

[Z] J. Zhong, Harmonic Analysis for Some Schrödinger Type Operators, Ph. D. Thesis, Princeton University, 1993.