Notons le cardinal minimal d’un code ternaire de longueur et de rayon de recouvrement un. Dans un précédent article, nous avons amélioré la minoration en montrant que . Dans cette note, nous prouvons que .
Let denote the minimum cardinality of a ternary code of length and covering radius one. In a previous paper, we improved on the lower bound by showing that . In this note, we prove that .
@article{JTNB_1996__8_2_481_0, author = {Habsieger, Laurent}, title = {A new lower bound for the football pool problem for $7$ matches}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {481--484}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, mrnumber = {1438484}, zbl = {0866.94027}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1996__8_2_481_0/} }
TY - JOUR AU - Habsieger, Laurent TI - A new lower bound for the football pool problem for $7$ matches JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 481 EP - 484 VL - 8 IS - 2 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_1996__8_2_481_0/ LA - en ID - JTNB_1996__8_2_481_0 ER -
Habsieger, Laurent. A new lower bound for the football pool problem for $7$ matches. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 481-484. http://archive.numdam.org/item/JTNB_1996__8_2_481_0/
[1] Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory 36 (1990), 664-671. | MR | Zbl
,[2] Covering radius 1985-1994, preprint.
, , and ,[3] Lower bounds for q-ary coverings by spheres of radius one, J. Combin. Theory Ser. A 67 (1994), 199-222. | MR | Zbl
,[4] Binary codes with covering radius one: some new lower bounds, Discrete Mathematics, to appear. | MR | Zbl
,