Let be an algebraic number field given by the minimal polynomial of . We want to determine all subfields of given degree. It is convenient to describe each subfield by a pair such that is the minimal polynomial of . There is a bijection between the block systems of the Galois group of and the subfields of . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding subfield using -adic methods. We give a detailed description for all parts of the algorithm.
Soit un corps de nombres défini par le polynôme minimal de . Nous nous intéressons à déterminer les sous-corps de degré donné. Chaque sous-corps est décrit en donnant le polynôme minimal de et le plongement de dans donné par un polynôme tel que . Il y a une bijection entre les systèmes de blocs du groupe de Galois de et les sous-corps de . Ces systèmes de blocs sont calculés en utilisant les sous-groupes cycliques du groupe de Galois qui sont obtenus à partir du critère de Dedekind. Lorsqu’un système de blocs est connu, on calcule le sous-corps correspondants par des méthodes -adiques. Nous présentons ici une description détaillée de l’algorithme.
@article{JTNB_1998__10_2_243_0, author = {Kl\"uners, J\"urgen}, title = {On computing subfields. {A} detailed description of the algorithm}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {243--271}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {2}, year = {1998}, mrnumber = {1828244}, zbl = {0935.11047}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1998__10_2_243_0/} }
TY - JOUR AU - Klüners, Jürgen TI - On computing subfields. A detailed description of the algorithm JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 243 EP - 271 VL - 10 IS - 2 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_1998__10_2_243_0/ LA - en ID - JTNB_1998__10_2_243_0 ER -
Klüners, Jürgen. On computing subfields. A detailed description of the algorithm. Journal de théorie des nombres de Bordeaux, Volume 10 (1998) no. 2, pp. 243-271. http://archive.numdam.org/item/JTNB_1998__10_2_243_0/
[1] Ideal decompositions and subfields. J. Symbolic Comput. 21 (1996), 133-137. | MR | Zbl
, , ,[2] Local Fields. Cambridge University Press, 1986. | MR | Zbl
,[3] A polynomial reduction algorithm. Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 2, 351-360. | Numdam | MR | Zbl
, ,[4] Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. | MR | Zbl
[5] Efficient rational number reconstruction. J. Symbolic Comput 20 (1995), 287-297. | MR | Zbl
, ,[6] KANT V4. J. Symbolic Comput. 24 (1997), 267-283. | MR | Zbl
, , , , , ,[7] Imprimitive ninth-degree number fields with small discriminants. Math. Comput. 64 (1995), no. 209, 305-321. | MR | Zbl
, ,[8] Computing subfields in algebraic number fields. J. Austral. Math. Soc. Ser. A 49 (1990), 434-448. | MR | Zbl
,[9] Block systems of a Galois group. Experiment. Math. 4 (1995), no. 1, 1-9. | MR | Zbl
,[10] Über die Berechnung von Teilkörpern algebraischer Zahlkörper. Diplomarbeit, Technische Universität Berlin, 1995.
,[11] Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper. Dissertation, Technische Universität Berlin, 1997. | Zbl
,[12] On computing subfields. J. Symbolic Comput. 24 (1997), 385-397. | MR | Zbl
,[13] Factoring polynomials over algebraic number fields. SIAM J. Comput. 14 (1985), no. 1, 184-195. | MR | Zbl
,[14] Solvability by radicals is in polynomial time. J. Comput. System Sci. 30 (1985), no. 2, 179-208. | MR | Zbl
, ,[15] Computing subfields: Reverse of the primitive element problem. In A. Galligo F. Eyssete, editor, MEGA-92, Computational algebraic geometry, volume 109, pages 163-176. Birkhäuser, Boston, 1993. | MR | Zbl
, ,[16] An inequality about factors of polynomials. Math. Comput. 28 (1974), no. 128, 1153-1157. | MR | Zbl
,[17] Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, 1990. | MR | Zbl
,[18] Algorithmic Algebraic Number Theory. Encyclopedia of Mathematics and its Applications, 30. Cambridge University Press, Cambridge 1989 | MR | Zbl
, ,[19] Factoring polynomials over algebraic number fields. ACM Trans. Math. Software 2 (1976), no. 4, 335-350. | MR | Zbl
, ,[20] Finite Permutation Groups. Academic Press, New York-London 1964. | MR | Zbl
,