In the two dimensional real vector space one can define analogs of the well-known -adic number systems. In these number systems a matrix plays the role of the base number . In the present paper we study the so-called fundamental domain of such number systems. This is the set of all elements of having zero integer part in their “-adic” representation. It was proved by Kátai and Környei, that is a compact set and certain translates of it form a tiling of the . We construct points, where three different tiles of this tiling coincide. Furthermore, we prove the connectedness of and give a result on the structure of its inner points.
Pour une matrice réelle d’ordre donnée, on peut définir la notion de représentation -adique d’un élément de . On note le domaine fondamental constitué des nombres de dont le développement “-adique” ne commence pas par . C’est l’analogue dans des nombres -adiques, où la matrice joue le rôle de la base . Kátai et Környei ont démontré que est compact, et que s’écrit comme la réunion dénombrable de certains translatés de , l’intersection de quelconques d’entre eux étant de mesure nulle. Dans cet article, nous construisons des points qui appartiennent simultanément à trois translatés de , et nous montrons que est connexe. Nous donnons aussi une propriété sur la structure des points intérieurs de .
@article{JTNB_2000__12_1_69_0, author = {Akiyama, Shigeki and Thuswaldner, J\"org M.}, title = {Topological properties of two-dimensional number systems}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {69--79}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {1}, year = {2000}, mrnumber = {1827838}, zbl = {1012.11072}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2000__12_1_69_0/} }
TY - JOUR AU - Akiyama, Shigeki AU - Thuswaldner, Jörg M. TI - Topological properties of two-dimensional number systems JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 69 EP - 79 VL - 12 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2000__12_1_69_0/ LA - en ID - JTNB_2000__12_1_69_0 ER -
%0 Journal Article %A Akiyama, Shigeki %A Thuswaldner, Jörg M. %T Topological properties of two-dimensional number systems %J Journal de théorie des nombres de Bordeaux %D 2000 %P 69-79 %V 12 %N 1 %I Université Bordeaux I %U http://archive.numdam.org/item/JTNB_2000__12_1_69_0/ %G en %F JTNB_2000__12_1_69_0
Akiyama, Shigeki; Thuswaldner, Jörg M. Topological properties of two-dimensional number systems. Journal de théorie des nombres de Bordeaux, Volume 12 (2000) no. 1, pp. 69-79. http://archive.numdam.org/item/JTNB_2000__12_1_69_0/
[1] Self affine tiling and pisot numeration system. Number Theory and its Applications (K. Györy and S. Kanemitsu, eds.), Kluwer Academic Publishers, 1999, pp 7-17. | MR | Zbl
,[2] A self-similar tiling generated by the minimal pisot number. Acta Math. Info. Univ. Ostraviensis 6 (1998), 9-26. | EuDML | MR | Zbl
and ,[3] Complex numbers with three radix representations. Can. J. Math. 34 (1982), 1335-1348. | MR | Zbl
,[4] Complex bases and fractal similarity. Ann. sc. math. Quebec 11 (1987), no. 1, 65-77. | MR
[5] On the structure of self-similar sets. Japan J. Appl. Math 2 (1985), 381-414. | MR | Zbl
,[6] Topological aspects of self-similar sets and singular functions. Fractal Geometry and Analysis (Netherlands) (J. Bélair and S. Dubuc, eds.), Kluwer Academic Publishers, 1991, pp. 255-276. | MR
[7] On the fractal curves induced from the complex radix expansion. Tokyo J. Math. 12 (1989), no. 2, 299-320. | MR | Zbl
,[8] Number systems and fractal geometry. preprint.
,[9] On number systems in algebraic number fields. Publ. Math. Debrecen 41 (1992), no. 3-4, 289-294. | MR | Zbl
and ,[10] Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen. Acta Sci. Math. (Szeged) 42 (1980), 99-107. | MR | Zbl
and ,[11] _Canonical number systems in imaginary quadratic fields. Acta Math. Hungar. 37 (1981), 159-164. | MR | Zbl
[12] Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975), 255-260. | MR | Zbl
and ,[13] The art of computer programming, vol 2: Seminumerical algorithms, 3rd ed. Addison Wesley, London, 1998. | MR | Zbl
,[14] Canonical number systems in algebraic number fields. Acta Math. Hungar. 37 (1981), 405-407. | MR | Zbl
,[15] Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 55 (1991), 286-299. | MR | Zbl
and ,[16] Fractal properties of number systems. Peri0dica Mathematica Hungarica, to appear. | Zbl
, , and ,[17] Fractal dimension of sets induced by bases of imaginary quadratic fields, Math. Slovaca 48 (1998), no. 4, 365-371. | MR | Zbl
,