Pour un nombre irrationnel et un nombre réel , on considère la constante d’approximation non-homogène
For an irrational real number and real number we consider the inhomogeneous approximation constant
@article{JTNB_2001__13_2_539_0, author = {Pinner, Christopher G.}, title = {More on inhomogeneous diophantine approximation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {539--557}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, mrnumber = {1879672}, zbl = {1014.11043}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2001__13_2_539_0/} }
TY - JOUR AU - Pinner, Christopher G. TI - More on inhomogeneous diophantine approximation JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 539 EP - 557 VL - 13 IS - 2 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2001__13_2_539_0/ LA - en ID - JTNB_2001__13_2_539_0 ER -
Pinner, Christopher G. More on inhomogeneous diophantine approximation. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 539-557. http://archive.numdam.org/item/JTNB_2001__13_2_539_0/
[1] The inhomogeneous minima of binary quadratic forms. Part I, Acta Math. 87 (1952), 259-323; Part II, Acta Math. 88 (1952), 279-316; Part III, Acta Math. 92 (1954), 199-234; Part IV (without second author) Acta Math. 92 (1954), 235-264. | Zbl
, ,[2] On inhomogeneous Diophantine approximation. J. Number Theory 48 (1994), 259-283. | MR | Zbl
, , ,[3] Non-homogeneous binary quadratic forms. Nederl. Akad. Wetensch. Proc. 50 (1947), 741-749, 909-917 = Indagationes Math. 9 (1947), 351-359, 420-428. | MR | Zbl
,[4] On inhomogeneous diophantine approximation and the Nishioka - Shiokawa- Tamura algorithm. Acta Arith. 86 (1998), 305-324. | MR | Zbl
,[5] On inhomogeneous Diophantine approximation, preprint.
, , ,[6] Non-homogeneous quadratic forms, I, II. Nederl. Akad. Wetensch. Proc. 51, (1948) 396-404, 470-481. = Indagationes Math. 10 (1948), 142-150, 164-175. | MR | Zbl
,